[1] 陈绍江,黎亮,李浩川,徐晓炜.玉米单倍体育种技术[M].北京:中国农业大学出版社, 2009. Chen S J, Li L, Li H C, Xu X W. Maize haploid breeding technology[M]. Beijing:China Agricultural University Press, 2009. [2] Gémes-Juhász A, Balogh P, Ferenczy A, Kristóf Z. Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativusL.)[J]. Plant Cell Reports, 2002, 21(2):105-111. doi:10.1007/s00299-002-0482-8. [3] 杜胜利,魏爱民,魏惠军,王艳飞,霍振荣,马德华.利用生物技术创造黄瓜育种新材料方法研究[J].天津科技, 2001(2):64. doi:10.14099/j.cnki.tjkj.2001.02.029. Du S L, Wei A M, Wei H J, Wang Y F, Huo Z R, Ma D H. Study on the method of creating new materials for cucumber breeding by using biotechnology[J]. Tianjin Science and Technology, 2001(2):64. [4] 王烨,顾兴芳,张圣平,苗晗.黄瓜未受精胚珠离体培养及单倍体植株再生[J].园艺学报, 2015, 42(11):2174-2182. doi:10.16420/j.issn.0513-353x.2014-1074. Wang Y, Gu X F, Zhang S P, Miao H. Studies on haploid plant induction via in vitro unfertilized ovule culture of cucumber[J]. Acta Horticulturae Sinica, 2015, 42(11):2174-2182. [5] 杜胜利,韩毅科,丛颖,魏爱民,侯锋,陈启民.黄瓜离体雌核发育的过程及早期生化变化研究[J].南开大学学报(自然科学版), 2003, 36(2):27-30. doi:10.3969/j.issn.0465-7942.2003.02.005. Du S L, Han Y K, Cong Y, Wei A M, Hou F, Chen Q M. Histological and early biochemical aspects in cucumber in vitro gynogenesis[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis (Natural Science Edition), 2003, 36(2):27-30. [6] Wei A M, Du S L, Han Y K, Liu N, Zhang G H. A study on the relationship between cucumber gynogenesis and content of ovary hormones and polyamines[J]. Acta Horticulturae, 2010, 871(871):625-630. doi:10.17660/ActaHortic.2010.871.86. [7] 韩毅科,杜胜利,魏爱民,高述民,张桂华,陈启民.黄瓜离体雌核发育早期的特异蛋白研究[J].南开大学学报(自然科学版), 2006, 39(6):1-5. doi:10.3969/j.issn.0465-7942.2006.06.001. Han Y K, Du S L, Wei A M, Gao S M, Zhang G H, Chen Q M. Studies on specific proteins during early stage of cucumber in vitro gynogenesis[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis (Natural Science Edition), 2006, 39(6):1-5. [8] 潘晓,徐春香,陈厚彬.植物体细胞胚胎发生的研究进展[J].江西农业学报, 2009, 21(10):103-107.doi:10.19386/j.cnki,jxnyxb.2009.10.032. Pan X, Xu C X, Chen H B. Research advances in plant somatic embryogenesis[J]. Acta Agriculturae Jiangxi, 2009, 21(10):103-107. [9] Kitamiya E, Suzuki S, Sano T, Nagata T. Isolation of two genes that were induced upon initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2, 4-D[J]. Plant Cell Reports, 2000, 19(6):551-557. doi:10.1007/s002990050772. [10] Fowler M R, Ong L M, Russinova E, Atanassov A I, Scott N W, Slater A, Elliott M C. Early changes in gene expression during direct somatic embryogenesis in alfalfa revealed by RAP-PCR[J]. Journal of Experimental Botany, 1998, 49(319):249-253. doi:10.1093/jxb/49.319.249. [11] Papadakis A K, Roubelakis-Angelakis K A. Oxidative stress could be responsible for the recalcitrance of plant protoplasts[J]. Plant Physiol Biochem, 2002, 40(6-8):549-559. doi:10.1016/s0981-9428(02)01423-7. [12] Zhang S G, Han S Y, Yang W H, Wei H L, Zhang M, Qi L W. Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Lartx leptolepis[J]. Plant Cell, Tissue and Organ Culture, 2010, 100(1):21-29. doi:10.1007/s11240-009-9612-0. [13] Padmanabhan K, Cantliffe D J, Koch K E. Auxin-regulated gene expression and embryogenic competence in callus cultures of sweet potato, Ipomoea batata(L.) Lam[J]. Plant Cell Reports, 2001, 20(3):187-192. doi:10.1007/s002990000306. [14] Leal I, Misra S. Molecular cloning and characterization of a legumin-like storage protein cDNA of Douglas fir seeds[J]. Plant Molecular Biology, 1993, 21(4):709-715. doi:10.1007/BF00014555. [15] Yang H P, Saitou T, Komeda Y, Harada H, Kamada H. Late embryogenesis abundant protein in Arabidopsis Thaliana homologous to carrot ECP31[J]. Physiologia Plantarum, 1996, 98(3):661-666. doi:10.1111/j.1399-3054.1996.tb05724.x. [16] Zhu C F, Hiroshi K, Hiroshi H, He M Y, Hao S. Isolation and characterization of a cDNA encoded an embryogenic cell protein-63 related to embryogenesis from carrot[J]. Acta Botanica Sinica, 1997, 39(12):1091-1098. [17] Yang H P, Saitou T, Komeda Y, Harada H, Kamada H. Arabidopsis thaliana ECP63 encoding a LEA protein is located in chromosome 4[J]. Gene, 1997, 184(1):83-88. doi:10.1016/S0378-1119(96)00578-1. [18] Suprasanna P, Desai N S, Nishanth G, Ghosh S B, Laxmi N, Bapat V A. Differential gene expression in embryogenic, non-embryogenic and desiccation induced cultures of sugarcane[J]. Sugar Tech, 2004, 6(4):305-309. doi:10.1007/bf02942513. [19] Lindzen E, Choi J H. A carrot cDNA encoding an atypical protein kinase homologous to plant calcium-dependent protein kinases[J]. Plant Molecular Biology, 1995, 28(5):785-797. doi:10.1007/BF00042065. [20] Daveletova S, Mészáros T, Miskolczi P, Oberschall A, Török K, Magyar Z, Dudits D, Deák M. Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells[J]. Journal of Experimental Botany, 2001, 52(355):215-221. doi:10.1093/jexbot/52.355.215. [21] Shah K, Jr T W J G, Erp H V, Valérie Hecht, Vries S C D. Subcellular localization and oligomerization of the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 protein[J]. Journal of Molecular Biology, 2001, 309(3):641-655. doi:10.1006/jmbi.2001.4706. [22] Hecht V, Vielle-Calzada J P, Hartog M V, Schmidt E D L,Boutilier K, Grossniklaus U, Vries S C D. The Arabidopsis Somatic embryogenesis receptor kinase-1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture[J]. Plant Physiology, 2001, 127(3):803-816. doi:10.1104/pp.127.3.803. [23] Komamine A, Murata N, Nomura K. Mechanisms of somatic embryogenesis in carrot suspension cultures morphology, physiology, biochemistry, and molecular biology[J]. In Vitro Cellular&Developmental Biology Plant, 2005, 41(1):6-10. doi:10.1079/IVP2004593. [24] Reynolds T L. Effects of calcium on embryogenic induction and the accumulation of abscisic acid and an early cysteine-labeled metal-lothionein gene in androgenic microspores of Triticum aestivum[J]. Plant Science, 2000, 150(2):201-207. doi:10.1016/s0168-9452(99)00187-9. [25] Kyo M, Miyatake H, Mamezuka K, Amagata K. Cloning of cDNA encoding NtPEc, a marker protein for the embryogenic differentiation of immature tobacco pollen grains cultured in vitro[J]. Plant and Cell Physiology, 2000, 41(2):129-137.doi:10.1093/pcp/41.2.129. [26] Sabehat A, Lurie S, Weiss D. Expression of small heat-shock proteins at low temperatures. A possible role in protecting against chilling injuries[J]. Plant Physiology, 1998, 117(2):651-658.doi:10.1104/pp.117.2.651. [27] Boutilier K. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryogenic growth[J]. The Plant Cell, 2002, 14(8):1737-1749. doi:10.1005/tpc.001941. [28] Perry S E, Lehti M D, Fernandez D E. The MADS-domain protein AG-AMOUS-like 15 accumulates in embryonic tissues with diverse origins[J]. Plant Physiology, 1999, 120(1):121-129.doi:10.1104/pp.120.1.121. [29] Baudino S, Hansen S, Brettschneider R, Hecht V F G, Dresselhaus T, L rz H, Dumas C, Rogowsky P M. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family[J]. Planta, 2001, 213(1):1-10. doi:10.2307/23386208. [30] Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation[J]. The Plant Cell, 2006, 18(6):1498-1509. doi:10.1105/tpc.106.041640. [31] Tanaka M, Wallace I S, Takano J, Roberts D M, Fujiwara T. NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis[J]. The Plant Cell, 2008, 20(10):2860-2875. doi:10.1105/tpc.108.058628. [32] Li C J, Pfrffer H, Dannel F, R mheld V, Bangerth F. Effects of boron starvation on boron compartmentation and possibly hormone-mediated elongation growth and apical dominance of pea (Pisum sativum) plants[J]. Physiologia Plantarum, 2001, 111(2):212-219. doi:10.1034/j.1399-3054.2001.1110212.x. [33] Schenk P W, Snaar-Jagalska B E. Signal perception and transduction:the role of protein kinases[J]. Biochimica Et Biophysica Acta, 1999, 1449(1):1-24. doi:10.1016/S0167-4889(98)00178-5. [34] Rudrabhatla P, Reddy M M, Rajasekharan R. Genome-wide analysis and experimentation of plant serine/threonine/tyrosine-specific protein kinases[J]. Plant Molecular Biology, 2006, 60(2):293-319. doi:10.1007/s11103-005-4109-7. |