[1] 张昆,李明娜, 曹世豪, 孙彦. 植物盐胁迫下应激调控分子机制研究进展[J]. 草地学报, 2017, 25(2):226-235. doi:10.11733/j.issn. 1007-0435.2017.02.002. Zhang K, Li M N, Cao S H, Sun Y. The research advances of molecular mechanisms of plant in responding to salt stress[J]. Acta Agrestia Sinica, 2017, 25(2):226-235. [2] 厉书豪, 李曼, 张文东, 李仪曼, 艾希珍, 刘彬彬, 李清明. CO2加富对盐胁迫下黄瓜幼苗叶片光合特性及活性氧代谢的影响[J]. 生态学报, 2019, 39(6):2122-2130. doi:10.5846/stxb201712212296. Li S H, Li M, Zhang W D, Li Y M, Ai X Z, Liu B B, Li Q M. Effects of CO2 enrichment on photosynthetic characteristics and reactive oxygen species metabolism in leaves of cucumber seedlings under salt stress[J]. Acta Ecologica Sinica, 2019, 39(6):2122-2130. [3] 孙超, 单楠, 王慧娟, 章颖佳, 王振雨, 张振贤, 眭晓蕾. 盐胁迫对黄瓜幼苗光合作用及其关键酶基因表达特性的影响[J]. 中国蔬菜, 2016(8):29-34. doi:10.3969/j.issn.1000-6346.2016.08.007. Sun C, Shan N, Wang H J, Zhang Y J, Wang Z Y, Zhang Z X, Sui X L. Effect of salt stress on photosynthetic characteristic and relevant gene expression of cucumber seedling[J]. China Vegetables, 2016(8):29-34. [4] 沈季雪, 蒋景龙. 不同浓度NaCl处理对6种黄瓜种子萌发的影响[J]. 江苏农业科学, 2017, 45(7):111-115. doi:10.15889/j.issn.1002-1302.2017.07.029. Shen J X, Jiang J L. Effects of different NaCl treatment on germination of 6 cucumber seeds[J]. Jiangsu Agricultural Sciences, 2017, 45(7):111-115. [5] Naliwajski M R, Skłodowska M. The relationship between carbon and nitrogen metabolism in cucumber leaves acclimated to salt stress[J]. Peer J, 2018, 6(12):1-26. doi:10.7717/peerj. 6043. [6] 田雲, 蒋景龙, 李丽, 余妙, 任绪明. 信号分子硫化氢调控植物抗逆性研究进展[J]. 核农学报, 2017, 31(11):2279-2287. doi:10.11869/j.issn.100-8551.2017.11.2279. Tian Y, Jiang J L, Li L, Yu M, Ren X M. Research advances in plant stress resistance regulated by signal molecule hydrogen sulfide[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(11):2279-2287. [7] 鲍敬, 丁同楼, 贾文娟, 王灵燕, 王宝山. 外源H2S对盐胁迫下小麦种子萌发的影响[J]. 现代农业科技, 2011(20):40-42.doi:10.3969/j.issn.1007-5739.2011.20.018. Bao J, Ding T L, Jia W J, Wang L Y, Wang B S. Effect of exogenous hydrogen sulfiocde on wheat seed germination under salt stress[J]. Xiandai Nongye Keji, 2011(20):40-42. [8] 何庆元, 向仕华, 吴萍, 李正鹏, 王松华, 祝嫦巍, 张晓红. 硫化氢对盐胁迫条件下大豆抗氧化酶活性的影响[J]. 大豆科学, 2015, 34(3):427-431. doi:10.11861/j.issn.1000-9841.2015.03.0427. He Q Y, Xiang S H, Wu P, Li Z P, Wang S H, Zhu C W, Zhang X H. Effects of hydrogen sulfide alleviates salt stress in soybean (Glycine max) antioxidative system[J]. Soybean Science, 2015, 34(3):427-431. [9] 董靖, 李红丽, 董智, 白文华. H2S对NaCl胁迫下草木犀幼苗生理指标及抗氧化酶活性的影响[J]. 草业科学, 2018, 35(10):2430-2437. doi:10.11829/j.issn.1001-0629.2017-0678. Dong J, Li H L, Dong Z, Bai W H. Effect of H2S on physiological indexes and antioxidant activity of sweet clover seedlings under NaCl stress[J]. Pratacultural Science, 2018, 35(10):2430-2437. [10] 郑州元, 林海荣, 崔辉梅. 外源硫化氢对加工番茄种子耐盐性及抗氧化酶的影响[J]. 干旱地区农业研究, 2017, 35(5):236-241,262. Zheng Z Y, Lin H R, Cui H M. Effects of exogenous hydrogen sulfide on salt tolerance and antioxidant enzymes of processing tomato seeds[J]. Agricultural Research in the Arid Areas, 2017, 35(5):236-241,262. [11] 黄菡, 郭莎莎, 陈良超, 肖斌. 外源硫化氢对盐胁迫下茶树抗氧化特性的影响[J]. 植物生理学报, 2017, 53(3):497-504.doi:10.13592/j.cnki.ppj.2016.0501. Huang H, Guo S S, Chen L C, Xiao B. Effects of exogenous hydrogen sulfide on the antioxidant characteristics of tea plant (Camellia sinensis) under salt stress[J]. Plant Physiology Journal, 2017, 53(3):497-504. [12] 谢平凡, 邱冬冬, 陈珍. 外源硫化氢缓解水稻盐胁迫的作用机理[J]. 贵州农业科学, 2017, 45(3):8-13. doi:10.3969/j.issn.1001-3601.2017.03.003. Xie P F, Qiu D D, Chen Z. Functional mechanism of exogenous H2S to relieve salt stress in rice[J]. Guizhou Agricultural Sciences, 2017, 45(3):8-13. [13] Wang Y Q, Li L, Cui W T, Xu S, Shen W B, Wang R. Hydrogen sulfide enhances alfalfa (Medicago sativa)tolerance against salinity during seed germinationby nitric oxide pathway[J]. Plant Soil, 2012, 351(1-2):107-119. doi:10.1007/s11104-011-0936-2. [14] 蔺亚平, 林海荣, 崔辉梅. 外源H2S和H2O2对NaCl胁迫下加工番茄幼苗生理特性的影响[J]. 华北农学报, 2018, 33(3):159-166.doi:10.7668/hbnxb.2018.03.024. Lin Y P, Lin H R, Cui H M. Effect of exogenous H2S and H2O2 on the physiological characteristics of processing tomato seedlings under NaCl stress[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(3):159-166. [15] Jiang J L, Tian Y, Li L, Yu M, Hou R P, Ren X M. H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress response[J]. Frontiers in Plant Science, 2019, 10(678):1-17. doi:10.3389/fpls.2019.00678. [16] 任绪明, 蒋景龙, 孙旺, 李丽. 外源H2S影响黄瓜幼苗响应高盐胁迫的蛋白质组学分析[J]. 西北植物学报, 2018, 38(12):2236-2248.doi:10.7606/j.issn.1000-4025.2018.12.2236. Ren X M, Jiang J L, Sun W, Li L. Proteomic analysis of cucumber seedling response to high salt stress by exogenous H2S[J]. Acta Bot Boreal-Occident Sin, 2018, 38(12):2236-2248. [17] 蒋景龙, 沈季雪, 李丽. 外源H2O2对盐胁迫下黄瓜幼苗氧化胁迫及抗氧化系统的影响[J]. 西北农业学报, 2019, 28(6):998-1007. doi:10.7606/j.issn.1004-1389.2019.06.017. Jiang J L, Shen J X, Li L. Effects of exogenous hydrogen peroxide on oxidative stress and antioxidant system in Cucumis sativus L.seedlings under salt stress[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(6):998-1007. [18] 陈哲, 黄静, 赵佳, 梁宏. 草莓应答炭疽菌侵染的转录组分析[J]. 植物保护, 2020, 46(3):138-146. doi:10.16688/j.zwbh.2019096. Chen Z, Huang J, Zhao J, Liang H. Transcriptomics analysis of strawberry response to colletotrichum theobromicola infection[J]. Journal of Plant Protection, 2020, 46(3):138-146. [19] Wang J Y, Qiao Q, Tao J H. The physiological response of three Narcissus pseudonarcissus under NaCl stress[J]. American Journal of Plant Sciences, 2019, 10(3):447-461. doi:10.4236/ajps.2019.103032. [20] Ma Y, Wang P, Chen Z J, Gu Z X, Yang R Q. NaCl stress on physio-biochemical metabolism and antioxidant capacity in germinated hulless barley (Hordeum vulgare L.)[J]. Journal of the Science of Food and Agriculture, 2019, 99(4):1755-1764. doi:10.1002/jsfa.9365. [21] 朱会朋, 孙健, 赵楠, 马旭君, 张玉红, 沈昕, 陈少良. 盐胁迫下硫化氢调控杨树根系的离子流[J]. 植物生理学报, 2013, 49(6):561-567. Zhu H P, Sun J, Zhao N, Ma X J, Zhang Y H, Shen X, Chen S L. Hydrogen sulfide mediates ion fluxes in root of poplars under NaCl stress[J]. Plant Physiology Journal, 2013, 49(6):561-567. [22] 安国勇, 李保珠, 武桂丽, 宋纯鹏. H2O2作为根源信号介导盐胁迫诱导的蚕豆气孔关闭反应[J]. 植物生理学报, 2012, 48(3):265-271. An G Y, Li B Z, Wu G L, Song C P. H2O2 could act as root source signal to mediate stomatal closure induced by salt stress of Vicia faba L.[J]. Plant Physiology Journal, 2012, 48(3):265-271. [23] 陈莎莎, 贺转转, 姜生秀, 李晓荣, 邢佳佳, 吕秀云, 兰海燕.藜Ca MAPKK2 的表达分析及盐胁迫信号通路互作组分的筛选[J]. 中国农业科学, 2013, 46(5):889-897.doi:10.3864/j.issn.0578-1752.2013.05.003. Chen S S, He Z Z, Jiang S X, Li X R, Xing J J, Lü X Y, Lan H Y. The expression analysis and screening of interaction protein of mitogen-activated protein kinase (Ca MAPKK2) in salt-stress signal pathways of Chenopodium album[J]. Scientia Agricultura Sinica, 2013, 46(5):889-897. [24] García-Mata C, Lamattina L. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling[J]. New Phytologist, 2010, 188(4):977-984. doi:10. 1111/j.1469-8137.2010.03465.x. [25] 侯智慧, 刘菁, 侯丽霞, 李希东, 刘新. H2S可能作为H2O2的下游信号介导茉莉酸诱导的蚕豆气孔关闭[J]. 植物学报, 2011, 46(4):396-406.doi:10.3724/SP.J.1259.2011.00396. Hou Z H, Liu J, Hou L X, Li X D, Liu X. H2S may function downstream of H2O2 in jasmonic acid-induced stomatal closure in Vicia faba[J]. Chinese Bulletin of Botany, 2011, 46(4):396-406. [26] 车永梅, 邹雪, 王兰香, 张丹丹, 刘新. H2S位于SOS上游参与盐胁迫诱导的拟南芥气孔关闭[J]. 植物生理学报, 2012, 48(11):1098-1104. Che Y M, Zou X, Wang L X, Zhang D D, Liu X. H2S signals salt-induced stomatal closure in Arabidopsis thaliana by SOS pathway[J]. Plant Physiology Journal, 2012, 48(11):1098-1104. [27] 曹晏彬, 柏素花, 戴洪义. 苹果丙二烯氧化物环化酶基因MdAOC1 的克隆与表达分析[J]. 林业科学, 2013, 49(12):73-80. doi:10.11707/j.1001-7488.20131211. Cao Y B, Bai S H, Dai H Y. Cloning and expression analysis of allene oxide cyclase gene MdAOC1 from Malus domestica[J]. Scientia Silvae Sinicae, 2013, 49(12):73-80. [28] Naor N, Gurung F B, Ozalvo R, Bucki P, Sanadhya P, Miyara S B. Tight regulation of allene oxide synthase (AOS) and allene oxide cyclase-3(AOC3) promote Arabidopsis susceptibility to the root-knot nematode Meloidogyne javanica[J]. Eur J Plant Patho, 2018, 150(1):149-165. doi:10.1007/s10658-017-1261-2. [29] Rai A N, Tamirisa S, Rao K V, Kumar V, Suprasanna P. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis[J]. Plant Molecular Biology, 2016, 90:375-387. doi:10. 1007/s11103-015-0423-x. [30] 杨洪兵. 渗透胁迫和盐胁迫对荞麦硝酸还原酶及亚硝酸还原酶活性的影响[J]. 作物杂志, 2013(3):53-55. doi:10.16035/j.issn.1001-7283.2013.03.016. Yang H B. Effects of osmotic and salt stress on nitrate reductase and nitrite reductase activities of buckwheat[J]. Crops, 2013(3):53-55. [31] Ebel C, BenFeki A, Hanin M, Solano R, Chini A. Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum durum TdTIFY11a in salt stress tolerance[J]. PLoS One, 2018, 13(7):e0200566. doi:10.1371/journal.pone.0200566. [32] Sun W, Chen H, Wang J, Sun H W, Yang S K, Sang Y L, Lu X B, Xu X H. Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction[J]. Funct Integr Genomics, 2015, 15(1):107-120. doi:10.1007/s10142-014-0410-3. [33] Golldack D, Quigley F, Michalowski C B, Kamasani U R, Bohnert H J. Salinity stress-tolerant and-sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently[J]. Plant Molecular Biology, 2003, 51(1):71-81. doi:10.1023/A:1020763218045. |