[1] |
Pan J, Zhang L Y, Chen G Q, Wen H F, Chen Y, Du H, Zhao J L, He H L, Lian H L, Chen H M, Shi J X, Cai R, Wang G, Pan J S. Study of micro-trichome(mict)reveals novel connections between transcriptional regulation of multicellular trichome development and specific metabolism in cucumber[J]. Horticulture Research, 2021, 8:21.doi: 10.1038/s41438-020-00456-0.
doi: 10.1038/s41438-020-00456-0
|
[2] |
Zhao J Y, Jiang L, Che G, et al. A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber[J]. The Plant Cell, 2019, 31(6):1289-1307.doi: 10.1105/tpc.18.00905.
doi: 10.1105/tpc.18.00905
URL
|
[3] |
Zhang Z, Wang B W, Wang S H, Lin T, Yang L, Zhao Z L, Zhang Z H, Huang S W, Yang X Y. Genome-wide target mapping shows histone deacetylase Complex1 regulates cell proliferation in cucumber fruit[J]. Plant Physiology, 2020, 182(1):167-184.doi: 10.1104/pp.19.00532.
doi: 10.1104/pp.19.00532
pmid: 31378719
|
[4] |
Ursache R, De Jesus Vieira Teixeira C, Dénervaud Tendon V, Gully K, De Bellis D, Schmid-Siegert E, Grube Andersen T, Shekhar V, Calderon S, Pradervand S, Nawrath C, Geldner N, Vermeer J E M. GDSL-domain proteins have key roles in suberin polymerization and degradation[J]. Nature Plants, 2021, 7(3):353-364.doi: 10.1038/s41477-021-00862-9.
doi: 10.1038/s41477-021-00862-9
pmid: 33686223
|
[5] |
Ren R S, Yang X P, Xu J H, Zhang K Y, Zhang M, Liu G, Yao X F, Lou L N, Xu J, Zhu L L, Hou Q. Genome-wide identification and analysis of promising GDSL-type lipases related to gummy stem blight resistance in watermelon( Citrullus lanatus)[J]. Scientia Horticulturae, 2021, 289:110461.doi: 10.1016/j.scienta.2021.110461.
doi: 10.1016/j.scienta.2021.110461
URL
|
[6] |
Han F Q, Huang J J, Xie Q, Liu Y M, Fang Z Y, Yang L M, Zhuang M, Zhang Y Y, Lü H H, Wang Y, Ji J L, Li Z S. Genetic mapping and candidate gene identification of BoGL5,a gene essential for cuticular wax biosynthesis in broccoli[J]. BMC Genomics, 2021, 22(1):811.doi: 10.1186/s12864-021-08143-7.
doi: 10.1186/s12864-021-08143-7
|
[7] |
Wang C J, Li H L, Li Y X, Meng Q F, Xie F, Xu Y J, Wan Z J. Genetic characterization and fine mapping BrCER4 in involved cuticular wax formation in purple Cai-Tai( Brassica rapa L.var. purpurea)[J]. Molecular Breeding, 2019, 39(1):12.doi: 10.1007/s11032-018-0919-6.
doi: 10.1007/s11032-018-0919-6
|
[8] |
Oshima Y, Shikata M, Koyama T, Ohtsubo N, Mitsuda N, Ohme-Takagi M. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri[J]. The Plant Cell, 2013, 25(5):1609-1624.doi: 10.1105/tpc.113.110783.
doi: 10.1105/tpc.113.110783
URL
|
[9] |
Vráblová M, Vrábl D, Sokolov B, Markov D, Hronkov M. A modified method for enzymatic isolation of and subsequent wax extraction from Arabidopsis thaliana leaf cuticle[J]. Plant Methods, 2020, 16:129.doi: 10.1186/s13007-020-00673-7.
doi: 10.1186/s13007-020-00673-7
pmid: 32973915
|
[10] |
doi: 10.13349/j.cnki.jdxbn.20230426.001
|
|
Liu Y X, Gao X M, Huang M Y, Pei L M. Research progresses on composition,biosynthesis and functions in response to outer stresses of plant cuticular wax[J], Journal of University of Jinan(Science and Technology), 2023, 38(1):1-5.
|
[11] |
Lee S B, Suh M C. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species[J]. Plant Cell Reports, 2015, 34(4):557-572.doi: 10.1007/s00299-015-1772-2.
doi: 10.1007/s00299-015-1772-2
URL
|
[12] |
Yeats T H, Rose J K C. The formation and function of plant cuticles[J]. Plant Physiology, 2013, 163(1):5-20.doi: 10.1104/pp.113.222737.
doi: 10.1104/pp.113.222737
pmid: 23893170
|
[13] |
Kim H, Yu S I, Jung S H, Lee B H, Suh M C. The F-box protein SAGL1 and ECERIFERUM3 regulate cuticular wax biosynthesis in response to changes in humidity in Arabidopsis[J]. The Plant Cell, 2019, 31(9):2223-2240.doi: 10.1105/tpc.19.00152.
doi: 10.1105/tpc.19.00152
URL
|
[14] |
Segado P, Alejandro Heredia-Guerrero J, Heredia A, Domínguez E. Cutinsomes and CUTIN SYNTHASE1 function sequentially in tomato fruit cutin deposition[J]. Plant Physiology, 2020, 183(4):1622-1637.doi: 10.1104/pp.20.00516.
doi: 10.1104/pp.20.00516
pmid: 32457092
|
[15] |
Petit J, Bres C, Mauxion J P, Tai F W J, Martin L B B, Fich E A, Joubès J, Rose J K C, Domergue F, Rothan C. The glycerol-3-phosphate acyltransferase GPAT6 from tomato plays a central role in fruit cutin biosynthesis[J]. Plant Physiology, 2016, 171(2):894-913.doi: 10.1104/pp.16.00409.
doi: 10.1104/pp.16.00409
pmid: 27208295
|
[16] |
Li L H, Chai L L, Xu H W, Zhai H J, Wang T Y, Zhang M Y, You M S, Peng H R, Yao Y Y, Hu Z R, Xin M M, Guo W L, Sun Q X, Chen X Y, Ni Z F. Phenotypic characterization of the glossy1 mutant and fine mapping of GLOSSY1 in common wheat( Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 2021, 134(3):835-847.doi: 10.1007/s00122-020-03734-6.
doi: 10.1007/s00122-020-03734-6
|
[17] |
Ji J L, Cao W X, Dong X, Liu Z Z, Fang Z Y, Zhuang M, Zhang Y Y, Lv H H, Wang Y, Sun P T, Liu Y M, Li Z S, Yang L M. A 252-bp insertion in BoCER1 is responsible for the glossy phenotype in cabbage( Brassica oleracea L.var. capitata)[J]. Molecular Breeding, 2018, 38(11):128.doi: 10.1007/s11032-018-0888-9.
doi: 10.1007/s11032-018-0888-9
|
[18] |
Rajarammohan S, Pradhan A K, Pental D, Kaur J. Genome-wide association mapping in Arabidopsis identifies novel genes underlying quantitative disease resistance to Alternaria brassicae[J]. Molecular Plant Pathology, 2018, 19(7):1719-1732.doi: 10.1111/mpp.12654.
doi: 10.1111/mpp.12654
URL
|
[19] |
Chen M X, Du X, Zhu Y, Wang Z, Hua S J, Li Z L, Guo W L, Zhang G P, Peng J R, Jiang L X. Seed fatty acid reduceracts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis[J]. Plant,Cell & Environment, 2012, 35(12):2155-2169.doi: 10.1111/j.1365-3040.2012.02546.x.
doi: 10.1111/j.1365-3040.2012.02546.x
|
[20] |
张城瑜, 任纹慧, 耿小慧, 李丹, 吴昊, 倪珊珊, 王梦鸽, 罗彬彬, 徐涵, 赖钟雄. 香蕉GDSL脂肪酶基因家族全基因组鉴定与表达分析[J]. 福建农业学报, 2022, 37(11):1415-1429.doi: 10.19303/j.issn.1008-0384.2022.011.007.
doi: 10.19303/j.issn.1008-0384.2022.011.007
|
|
Zhang C Y, Ren W H, Geng X H, Li D, Wu H, Ni S S, Wang M G, Luo B B, Xu H, Lai Z X. Genome-wide identification and expressions analysis of banana GDSL lipase gene family[J]. Fujian Journal of Agricultural Sciences, 2022, 37(11):1415-1429.
|
[21] |
Uttam G A, Praveen M, Rao Y V, Tonapi V A, Madhusudhana R. Molecular mapping and candidate gene analysis of a new epicuticular wax locus in sorghum( Sorghum bicolor L.Moench)[J]. Theoretical and Applied Genetics, 2017, 130(10):2109-2125.doi: 10.1007/s00122-017-2945-x.
doi: 10.1007/s00122-017-2945-x
URL
|
[22] |
Girard A L, Mounet F, Lemaire-Chamley M, Gaillard C, Elmorjani K, Vivancos J, Runavot J L, Quemener B, Petit J, Germain V, Rothan C, Marion D, Bakan B. Tomato GDSL1 is required for cutin deposition in the fruit cuticle[J]. The Plant Cell, 2012, 24(7):3119-3134.doi: 10.1105/tpc.112.101055.
doi: 10.1105/tpc.112.101055
URL
|
[23] |
Petit J, Bres C, Just D, Garcia V, Mauxion J P, Marion D, Bakan B, Joubès J, Domergue F, Rothan C. Analyses of tomato fruit brightness mutants uncover both cutin-deficient and cutin-abundant mutants and a new hypomorphic allele of GDSL lipase[J]. Plant Physiology, 2014, 164(2):888-906.doi: 10.1104/pp.113.232645.
doi: 10.1104/pp.113.232645
pmid: 24357602
|
[24] |
Natarajan P, Akinmoju T A, Nimmakayala P, Lopez-Ortiz C, Garcia-Lozano M, Thompson B J, Stommel J, Reddy U K. Integrated metabolomic and transcriptomic analysis to characterize cutin biosynthesis between low-and high-cutin genotypes of Capsicum chinense jacq[J]. International Journal of Molecular Sciences, 2020, 21(4):1397.doi: 10.3390/ijms21041397.
doi: 10.3390/ijms21041397
URL
|
[25] |
Zhu J, Lou Y, Shi Q S, et al. Slowing development restores the fertility of thermo-sensitive male-sterile plant lines[J]. Nature Plants, 2020, 6(4):360-367.doi: 10.1038/s41477-020-0622-6.
doi: 10.1038/s41477-020-0622-6
pmid: 32231254
|
[26] |
Zhang H H, Wang M L, Li Y Q, Yan W, Chang Z Y, Ni H L, Chen Z F, Wu J X, Xu C J, Deng X W, Tang X Y. GDSL esterase/lipases OsGELP34 and OsGELP110/OsGELP115 are essential for rice pollen development[J]. Journal of Integrative Plant Biology, 2020, 62(10):1574-1593.doi: 10.1111/jipb.12919.
doi: 10.1111/jipb.12919
|
[27] |
An X L, Dong Z Y, Tian Y H, et al. ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize[J]. Molecular Plant, 2019, 12(3):343-359.doi: 10.1016/j.molp.2019.01.011.
doi: 10.1016/j.molp.2019.01.011
URL
|
[28] |
Huo Y Q, Pei Y R, Tian Y H, Zhang Z G, Li K, Liu J, Xiao S L, Chen H B, Liu J. IRREGULAR POLLENEXINE2 encodes a GDSL lipase essential for male fertility in maize[J]. Plant Physiology, 2020, 184(3):1438-1454.doi: 10.1104/pp.20.00105.
doi: 10.1104/pp.20.00105
URL
|
[29] |
Su H G, Zhang X H, Wang T T, Wei W L, Wang Y X, Chen J, Zhou Y B, Chen M, Ma Y Z, Xu Z S, Min D H. Genome-wide identification,evolution,and expression of GDSL-type esterase/lipase gene family in soybean[J]. Frontiers in Plant Science, 2020, 11:726.doi: 10.3389/fpls.2020.00726.
doi: 10.3389/fpls.2020.00726
URL
|
[30] |
Hong J K, Choi H W, Hwang I S, Kim D S, Kim N H, Choi D S, Kim Y J, Hwang B K. Function of a novel GDSL-type pepper lipase gene, CaGLIP1,in disease susceptibility and abiotic stress tolerance[J]. Planta, 2008, 227(3):539-558.doi: 10.1007/s00425-007-0637-5.
doi: 10.1007/s00425-007-0637-5
URL
|