[1] 孙军利,赵宝龙,郁松林. 外源水杨酸(SA)对高温胁迫下葡萄幼苗耐热性诱导研究[J]. 水土保持学报,2014,28(3):290-294,299.
[2] 孟雪娇,邸昆,丁国华. 水杨酸在植物体内的生理作用研究进展[J]. 中国农学通报,2010,26(15):207-214.
[3] 王楠,高静,黄文静,等. 旱、盐胁迫下黄芪种子萌发及其对水杨酸的响应[J]. 草业科学,2018,35(1):106-114.
[4] 符冠富,张彩霞,杨雪芹,等. 水杨酸减轻高温抑制水稻颖花分化的作用机理研究[J]. 中国水稻科学,2015,29(6):637-647.
[5] 徐晓昀,郁继华,颉建明,等. 水杨酸和油菜素内酯对低温胁迫下黄瓜幼苗光合作用的影响[J]. 应用生态学报,2016,27(9):3009-3015.
[6] 单长卷,赵新亮,汤菊香. 水杨酸对干旱胁迫下小麦幼苗抗氧化特性的影响[J]. 麦类作物学报,2014,34(1):91-95.
[7] 吴华,苏倩,陈金慧,等. 水杨酸对紫外线胁迫下杉木组培苗的影响[J]. 江苏农业科学,2016,44(9):207-210.
[8] Khan M,Fatma M,Per T S,et al. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants[J]. Frontiers in Plant Science,2015,6:462.
[9] Anil K,Das S N,Podile A R. Induced defense in plants:a short overview[J]. Proceedings of the National Academy of Sciences India,2014,84(3):669-679.
[10] Wani A B,Chadar H,Wani A H,et al. Salicylic acid to decrease plant stress[J]. Environmental Chemistry Letters,2017,15(1):101-123.
[11] Malamy J,Carr J P,Klessig D F,et al. Salicylic acid:a likely endogenous signal in the resistance response of tobacco to viral infection[J]. Science,1990,250(4983):1002-1004.
[12] Slaymaker D H,Navarre D A,Clark D,et al. The tobacco salicylic acid-binding protein 3(SABP3) is the chloroplast carbonic anhydrase,which exhibits antioxidant activity and plays a role in the hypersensitive defense response[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(18):11640-11645.
[13] Van Wees S C,Glazebrook J. Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. phaseolicola is due to degradation products of salicylic acid[J]. The Plant Journal:for Cell and Molecular Biology,2003,33(4):733-742.
[14] Lee B,Park Y S,Yi H S,et al. Systemic induction of the small antibacterial compound in the leaf exudate during benzothiadiazole-elicited systemic acquired resistance in pepper[J]. The Plant Pathology Journal,2013,29(3):350-355.
[15] Heath M C. Hypersensitive response-related death[J]. Plant Molecular Biology,2000,44(3):321-334.
[16] Greenberg J T,Guo A,Klessig D F,et al. Programmed cell death in plants:a pathogen-triggered response activated coordinately with multiple defense functions[J]. Cell,1994,77(4):551-563.
[17] Greenberg J T,Yao N. The role and regulation of programmed cell death in plant-pathogen interactions[J]. Cellular Microbiology,2004,6(3):201-211.
[18] Zhao Y,Luo L,Xu J,et al. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana[J]. Cell Research,2018,28(4):448-461.
[19] Green D R,Reed J C. Mitochondria and apoptosis[J]. Science,1998,281(5381):1309-1312.
[20] Reape T J,Kacprzyk J,Brogan N,et al. Mitochondrial markers of programmed cell death in Arabidopsis thaliana[J]. Methods in Molecular Biology,2015,1305(10):211-221.
[21] 王艳杰,邓雯,张鹏飞. 细胞色素C与细胞凋亡研究进展[J]. 动物医学进展,2012,33(7):89-92.
[22] Balk J,Leaver C J,Mccabe P F. Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants[J]. FEBS Letters,1999,463(1/2):151-154.
[23] Ambastha V,Tripathy B C,Tiwari B S. Programmed cell death in plants:A chloroplastic connection[J]. Plant Signaling & Behavior,2015,10(2):e989752.
[24] Van Aken O,Van Breusegem F. Licensed to kill:mitochondria,chloroplasts,and cell death[J]. Trends in Plant Science,2015,20(11):754-766.
[25] Samuilov V D,Lagunova E M,Kiselevsky D B,et al. Participation of chloroplasts in plant apoptosis[J]. Bioscience Reports,2003,23(2/3):103-117.
[26] Doyle S M,Diamond M,Mccabe P F. Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures[J]. Journal of Experimental Botany,2010,61(2):473-482.
[27] Lee K P,Kim C,Landgraf F,et al. EXECUTER1-and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(24):10270-10275.
[28] Kim C,Meskauskiene R,Zhang S,et al. Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway[J]. The Plant Cell,2012,24(7):3026-3039.
[29] Peters J S,Chin C. Evidence for cytochrome f involvement in eggplant cell death induced by palmitoleic acid[J]. Cell Death and Differentiation,2005,12(4):405-407.
[30] Zuppini A,Gerotto C,Moscatiello R,et al. Chlorella saccharophila cytochrome f and its involvement in the heat shock response[J]. Journal of Experimental Botany,2009,60(14):4189-4200.
[31] Wang H,Zhu X,Li H,et al. Induction of caspase-3-like activity in rice following release of cytochrome-f from the chloroplast and subsequent interaction with the ubiquitin-proteasome system[J]. Scientific Reports,2014,4:5989.
[32] Yao N,Greenberg J T. Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death[J]. The Plant Cell,2006,18(2):397-411.
[33] Zhao Y,Luo L,Xu J,et al. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana[J]. Cell Research,2018,28(4):448-461.
[34] Adam Z,Rudella A,Van Wijk K J. Recent advances in the study of Clp,FtsH and other proteases located in chloroplasts[J]. Current Opinion in Plant Biology,2006,9(3):234-240.
[35] Carrión C A,Costa M L,Martínez D E,et al. In vivo inhibition of cysteine proteases provides evidence for the involvement of ‘senescence-associated vacuoles’ in chloroplast protein degradation during dark-induced senescence of tobacco leaves[J]. Journal of Experimental Botany,2013,64(16):4967-4980.
[36] Luis C O,Armando B G,Julio M,et al. AtMCP1b,a chloroplast-localised metacaspase,is induced in vascular tissue after wounding or pathogen infection[J]. Functional Plant Biology,2007,34(12):1061-1071.
[37] Yang Y,Jin H,Chen Y,et al. A chloroplast envelope membrane protein containing a putative LrgB domain related to the control of bacterial death and lysis is required for chloroplast development in Arabidopsis thaliana[J]. The New Phytologist,2012,193(1):81-95.
[38] 刘双,乔禹,王芳,等. 基于数字基因表达谱筛选黄瓜中水杨酸诱导基因[J]. 核农学报,2015,29(5):874-884.
[39] Ramel F,Sulmon C,Gouesbet G,et al. Natural variation reveals relationships between pre-stress carbohydrate nutritional status and subsequent responses to xenobiotic and oxidative stress in Arabidopsis thaliana[J]. Annals of Botany,2009,104(7):1323-1337.
[40] Stone J M,Heard J E,Asai T,et al. Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants[J]. The Plant Cell,2000,12(10):1811-1822.
[41] Bowling S A, Clarke J D, Liu Y, et al. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance[J]. Plant Cell, 1997, 9:1573-1584.
[42] 仝贝. 植物叶绿体电子传递蛋白在细胞程序性死亡中的功能[D]. 西安:西北大学,2017.
[43] Petrov V,Hille J,Mueller-Roeber B,et al. ROS-mediated abiotic stress-induced programmed cell death in plants[J]. Frontiers in Plant Science,2015,6:69.
[44] Pétriacq P,De Bont L,Tcherkez G,et al. NAD:not just a pawn on the board of plant-pathogen interactions[J]. Plant Signaling & Behavior,2013,8(1):e22477.
[45] Yun L J,Chen W L. SA and ROS are involved in methyl salicylate-induced programmed cell death in Arabidopsis thaliana[J]. Plant Cell Reports,2011,30(7):1231-1239.
[46] 刘双. 诱导的黄瓜超敏反应相关基因的筛选和表达分析[D]. 哈尔滨:哈尔滨师范大学,2016.
[47] Narusaka M,Kawai K,Izawa N,et al. Gene coding for SigA-binding protein from Arabidopsis appears to be transcriptionally up-regulated by salicylic acid and NPR1-dependent mechanisms[J]. Journal of General Plant Pathology,2008,74(5):345-354.
[48] Xie Y D,Li W,Guo D,et al. The arabidopsis gene SIGMA FACTOR-BINDING PROTEIN 1 plays a role in the salicylate-and jasmonate-mediated defence responses[J]. Plant,Cell & Environment,2010,33(5):828-839.
[49] Kaurilind E,Brosché M. Stress marker signatures in lesion mimic single and double mutants identify a crucial leaf Age-Dependent salicylic acid related defense signal[J]. PLoS One,2017,12(1):e0170532.
[50] Rodrigues R A,Silva-Filho M C,Cline K. FtsH2 and FtsH5:two homologous subunits use different integration mechanisms leading to the same thylakoid multimeric complex[J]. The Plant Journal:for Cell and Molecular Biology,2011,65(4):600-609.
[51] Malnoë A,Wang F,Girard-Bascou J,et al. Thylakoid FtsH protease contributes to photosystem Ⅱ and cytochrome b6f remodeling in Chlamydomonas reinhardtii under stress conditions[J]. The Plant Cell,2014,26(1):373-390.
[52] Soleimani M J. Possible effects of pathogen inoculation and salicylic acid pre-treatment on the biochemical changes and proline accumulation in Green bean[J]. Archives of Phytopathology and Plant Protection,2015,48(3):212-222.
[53] Mur L A,Aubry S,Mondhe M,et al. Accumulation of chlorophyll catabolites photosensitizes the hypersensitive response elicited by Pseudomonas syringae in Arabidopsis[J]. The New Phytologist,2010,188(1):161-174.
[54] Christ B,Egert A,Süssenbacher I,et al. Water deficit induces chlorophyll degradation via the ‘PAO/phyllobilin’ pathway in leaves of homoio-(Craterostigma pumilum) and poikilochlorophyllous (Xerophyta viscosa) resurrection plants[J]. Plant,Cell & Environment,2014,37(11):2521-2531.
[55] Horie Y, Ito H, Kusaba M, et al. Participation of Chlorophyll b reductase in the initial step of the degradation of light-harvesting Chlorophyll a/b-protein complexes in Arabidopsis[J]. The Journal of Bioloical Chemistry, 2009, 284(26):17449-17456.
[56] 曹晏彬,柏素花,戴洪义. 苹果丙二烯氧化物环化酶基因MdAOC1的克隆与表达分析[J]. 林业科学,2013,49(12):73-80. |