[1] |
dos Santos A M P, Ferrari R G, Conte-Junior C A. Virulence factors in Salmonella typhimurium:The sagacity of a bacterium[J]. Current Microbiology, 2019, 76(6):762-773.doi: 10.1007/s00284-018-1510-4.
doi: 10.1007/s00284-018-1510-4
|
[2] |
Kumar S S, Ghosh A R. Assessment of bacterial viability:A comprehensive review on recent advances and challenges[J]. Microbiology, 2019, 165(6):593-610.doi: 10.1099/mic.0.000786.
doi: 10.1099/mic.0.000786
URL
|
[3] |
doi: 10.16768/j.issn.1004-874X.2020.05.009
|
|
Yang L L, Guan W, Sun L X, Wu Y E, Shan Z J, Wang Z G, Chen D H. Establishment of fluorescence LAMP detection system for pathogen of moko disease[J]. Guangdong Agricultural Sciences, 2020, 47(5):66-73.
|
[4] |
Xiao F F, Cao B, Wang C Y, Guo X J, Li M G, Xing D, Hu X L. Pathogen-specific polymeric antimicrobials with significant membrane disruption and enhanced photodynamic damage to inhibit highly opportunistic bacteria[J]. ACS Nano, 2019, 13(2):1511-1525.doi: 10.1021/acsnano.8b07251.
doi: 10.1021/acsnano.8b07251
pmid: 30632740
|
[5] |
Sauch J F, Flanigan D, Galvin M L, Berman D, Jakubowski W. Propidium iodide as an indicator of Giardia cyst viability[J]. Applied and Environmental Microbiology, 1991, 57(11):3243-3247.doi: 10.1128/aem.57.11.3243-3247.1991.
doi: 10.1128/aem.57.11.3243-3247.1991
pmid: 1723585
|
[6] |
Klein L, Robey E A, Hsieh C S. Central CD4 + T cell tolerance:deletion versus regulatory T cell differentiation[J]. Nature Reviews Immunology, 2019, 19(1):7-18.doi: 10.1038/s41577-018-0083-6.
doi: 10.1038/s41577-018-0083-6
|
[7] |
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0472
|
|
Wu X M, Zhao J F, Ni K, Zhu X F, Xu H Q. Bioinformatics analysis and subcellular localization of human HSPA8 gene[J]. Biotechnology Bulletin, 2019, 35(11):82-88.
|
[8] |
Kang Y, Lee W, Kim S, Jang G, Kim B G, Yoon Y. Enhancing the copper-sensing capability of Escherichia coli-based whole-cell bioreporters by genetic engineering[J]. Applied Microbiology and Biotechnology, 2018, 102(3):1513-1521.doi: 10.1007/s00253-017-8677-7.
doi: 10.1007/s00253-017-8677-7
URL
|
[9] |
doi: 10.13995/j.cnki.11-1802/ts.023272
|
|
Liu L, Ai L Z, Xia Y J, Xiong Z Q, Guan T, Song X. A reporter system with the enhanced green fluorescent protein in Lactococcus lactis NZ9000[J]. Food and Fermentation Industries, 2020, 46(11):46-51.
|
[10] |
doi: 10.3877/cma.j.issn.1674-1366.2019.03.002
|
|
Li X L, Wang X, Ling J Q, Hu X L, Deng D M. Application of green fluorescent protein reporter system in Streptococcus mutans for study on dual-species biofilms[J]. Chinese Journal of Stomatological Research (Electronic Edition), 2019, 13(3):136.
|
[11] |
Ishii N, Takeda H, Doi M, Fuma S, Miyamoto K, Yanagisawa K, Kawabata Z. A new method using enhanced green fluorescent protein(EGFP)to determine grazing rate on live bacterial cells by protists[J]. Limnology, 2002, 3(1):47-50.doi: 10.1007/s102010200006.
doi: 10.1007/s102010200006
URL
|
[12] |
Hapfelmeier S, Stecher B, Barthel M, Kremer M, Müller A J, Heikenwalder M, Stallmach T, Hensel M, Pfeffer K, Akira S, Hardt W D. The Salmonella pathogenicity island(SPI)-2 and SPI-1 type Ⅲ secretion systems allow Salmonella Serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms[J]. The Journal of Immunology, 2005, 174(3):1675-1685.doi: 10.4049/jimmunol.174.3.1675.
doi: 10.4049/jimmunol.174.3.1675
URL
|
[13] |
Debroy R, Miryala S K, Naha A, Anbarasu A, Ramaiah S. Gene interaction network studies to decipher the multi-drug resistance mechanism in Salmonella enterica serovar Typhi CT18 reveal potential drug targets[J]. Microbial Pathogenesis, 2020, 142:104096.doi: 10.1016/j.micpath.2020.104096.
doi: 10.1016/j.micpath.2020.104096
URL
|
[14] |
Bumann D. Regulated antigen expression in live recombinant Salmonella enterica serovar Typhimurium strongly affects colonization capabilities and specific CD4 +-T-cell responses[J]. Infection and Immunity, 2001, 69(12):7493-7500.doi: 10.1128/IAI.69.12.7493-7500.2001.
doi: 10.1128/IAI.69.12.7493-7500.2001
pmid: 11705925
|
[15] |
Abromaitis S, Faucher S, Béland M, Curtiss R, Daigle F. The presence of the tet gene from cloning vectors impairs Salmonella survival in macrophages[J]. FEMS Microbiology Letters, 2005, 242(2):305-312.doi: 10.1016/j.femsle.2004.11.024.
doi: 10.1016/j.femsle.2004.11.024
pmid: 15621452
|
[16] |
Tanner J R, Kingsley R A. Evolution of Salmonella within hosts[J]. Trends in Microbiology, 2018, 26(12):986-998.doi: 10.1016/j.tim.2018.06.001.
doi: 10.1016/j.tim.2018.06.001
URL
|
[17] |
Pulkkinen W S, Miller S I. A Salmonella typhimurium virulence protein is similar to a Yersinia enterocolitica invasion protein and a bacteriophage lambda outer membrane protein[J]. Journal of Bacteriology, 1991, 173(1):86-93.doi: 10.1128/jb.173.1.86-93.1991.
doi: 10.1128/jb.173.1.86-93.1991.
pmid: 1846140
|
[18] |
doi: 10.1111/j.1365-2958.1991.tb02135.x
pmid: 1766380
|
[19] |
Valdivia R H, Hromockyj A E, Monack D, Ramakrishnan L, Falkow S. Applications for green fluorescent protein(GFP)in the study of host-pathogen interactions[J]. Gene, 1996, 173(1):47-52.doi: 10.1016/0378-1119(95)00706-7.
doi: 10.1016/0378-1119(95)00706-7
URL
|
[20] |
Menashe O, Kaganskaya E, Baasov T, Yaron S. Aminoglycosides affect intracellular Salmonella enterica serovars typhimurium and Virchow[J]. Antimicrobial Agents and Chemotherapy, 2008, 52(3):920-926.doi: 10.1128/AAC.00382-07.
doi: 10.1128/AAC.00382-07
pmid: 18172002
|