[1] |
Guo M, Wang N, Fu C. Progress of studies on salt tolerance mechanisms in plant root system under salt stress[J]. Biotechnology Bulletin, 2012(6):7-12.
|
[2] |
doi: 10.13430/j.cnki.jpgr.2013.04.004
|
|
Zhang Q F, Chen Z J, Wu J Z, Jiang Y J, Yang J S, Cai S B. Screening for salinity tolerance at germination and seedling stages in wheat germplasm[J]. Journal of Plant Genetic Resources, 2013, 14(4):620-626.
|
[3] |
doi: 10.19386/j.cnki.jxnyxb.2018.12.07
|
|
Wang K J, Fan J W, Chen F, Li Q, Sun Z W, Guo M M, Zhang G X, Zheng G L. Research advances in response of plants to salt stress and regulation of salinity tolerance[J]. Acta Agriculturae Jiangxi, 2018, 30(12):31-40.
|
[4] |
doi: 10.13271/j.mpb.018.007334
|
|
Li Y Y, Yan Z F, Ma B, Wang H N, Hu Z H, Leng P S. Cloning and expression analysis of calmodulin gene LiCML from lilium[J]. Molecular Plant Breeding, 2020, 18(22):7334-7341.
|
[5] |
doi: 10.13271/j.mpb.019.002557
|
|
Tian X N, Yang Q, Pang C X, Li L M. Cloning and sequence analysis of CiCML23 gene from Caragana intermedia[J]. Molecular Plant Breeding, 2021, 19(8):2557-2563.
|
[6] |
doi: 10.7666/d.D01536007
|
|
Wu C L. A Mongolian pine specific calmodulin-like calcium binding protein physiological function research[D]. Hohhot: Inner Mongolia University, 2018.
|
[7] |
Midhat U, Ting M K Y, Teresinski H J, Snedden W A. The calmodulin-like protein,CML39,is involved in regulating seed development,germination,and fruit development in Arabidopsis[J]. Plant Molecular Biology, 2018, 96(4):375-392.doi: 10.1007/s11103-018-0703-3.
doi: 10.1007/s11103-018-0703-3
|
[8] |
Bender K W, Rosenbaum D M, Vanderbeld B, Ubaid M, Snedden W A. The Arabidopsis calmodulin-like protein,CML39,functions during early seedling establishment[J]. The Plant Journal, 2013, 76(4):634-647.doi: 10.1111/tpj.12323.
doi: 10.1111/tpj.12323
pmid: 24033804
|
[9] |
Yang X, Wang S S, Wang M, Qiao Z, Bao C C, Zhang W. Arabidopsis thaliana calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca 2+ concentration[J]. Plant Molecular Biology, 2014, 86(3):225-236.doi: 10.1007/s11103-014-0220-y.
doi: 10.1007/s11103-014-0220-y
pmid: 25139229
|
[10] |
Ma W, Smigel A, Tsai Y C, Braam J, Berkowitz G A. Innate immunity signaling:Cytosolic Ca 2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein[J]. Plant Physiology, 2008, 148(2):818-828.doi: 10.1104/pp.108.125104.
doi: 10.1104/pp.108.125104
URL
|
[11] |
Lokdarshi A, Conner W C, McClintock C, Li T, Roberts D M. Arabidopsis CML38,a calcium sensor that localizes to ribonucleoprotein complexes under hypoxia stress[J]. Plant Physiology, 2016, 170(2):1046-1059.doi: 10.1104/pp.15.01407.
doi: 10.1104/pp.15.01407
pmid: 26634999
|
[12] |
doi: 10.19728/j.issn1672-6634.2021.05.012
|
|
Zheng J L, Luo Q, Li Z T, Men S Z. Bioinformatics analysis of the auxin efflux carrier PIN proteins of Ricinus communis L.[J]. Journal of Liaocheng University (Natural Science Edition), 2021, 34(5):88-99.
|
[13] |
doi: 10.3969/j.issn.1001-4713.2021.09.015
|
|
Fei L M, Du J H, Yan Z R. High-yield cultivation techniques of castor in Karst landform area[J]. Special Economic Animal and Plant, 2021, 24(9):34-36.
|
[14] |
徐瑶. 蓖麻种子萌发期响应碱性盐(NaHCO3)胁迫的生理机制研究[D]. 哈尔滨: 东北林业大学, 2021.
|
|
Xu Y. A study on the physiological mechanism analysis of castor seed germination response to alkaline salt(NaHCO3)stress[D]. Harbin:Northeast Forestry University, 2021.
|
[15] |
Sultan M, Jamal Z, Jubeen F, Farooq A, Bibi I, Uroos M, Chaudhry H, Alissa S A, Iqbal M. Green synthesis of biodegradable polyurethane and castor oil-based composite for benign transformation of methylene blue[J]. Arabian Journal of Chemistry, 2021, 14(12):103417.doi: 10.1016/j.arabjc.2021.103417.
doi: 10.1016/j.arabjc.2021.103417
URL
|
[16] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[17] |
doi: 10.16420/j.issn.0513-353x.2018-0177
|
|
Pu M, Luo S L, Lian X P, Zeng J, Zhang H C, Liu Q Y, Zuo T H, Zhu L Q. Bioinformatics and expression analysis after pollination of stigma of CML family genes in Brassica oleracea var.capitata[J]. Acta Horticulturae Sinica, 2018, 45(11):2129-2140.
|
[18] |
doi: 10.13271/j.mpb.013.002721
|
|
Liu H, Deng Z, Chen J S, Li D J. Cloning and expression analysis of calmodulin-like protein gene HbCML27 from Hevea brasiliensis[J]. Molecular Plant Breeding, 2015, 13(12):2721-2727.
|
[19] |
Li D F, Li J, Li M, Zhang L, Lu Y T. Calmodulin isoform-specific activation of a rice calmodulin-binding kinase conferred by only three amino-acids of OsCaM61[J]. FEBS Letters, 2006, 580(18):4325-4331.doi: 10.1016/j.febslet.2006.06.090.
doi: 10.1016/j.febslet.2006.06.090
URL
|
[20] |
McCormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis[J]. The New Phytologist, 2003, 159(3):585-598.doi: 10.1046/j.1469-8137.2003.00845.x.
doi: 10.1046/j.1469-8137.2003.00845.x
URL
|
[21] |
Boonburapong B, Buaboocha T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins[J]. BMC Plant Biology, 2007, 7(1):4.doi: 10.1186/1471-2229-7-4.
doi: 10.1186/1471-2229-7-4
URL
|
[22] |
Mccormack E, Tsai Y C, Braam J. Handling calcium signaling: Arabidopsis CaMs and CMLs[J]. Trends in Plant Science, 2005, 10(8):383-389.doi: 10.1016/j.tplants.2005.07.001.
doi: 10.1016/j.tplants.2005.07.001
URL
|
[23] |
Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud J P, Aldon D. Mutations in AtCML9,a calmodulin-like protein from Arabidopsis thaliana,alter plant responses to abiotic stress and abscisic acid[J]. The Plant Journal, 2008, 56(4):575-589.doi: 10.1111/j.1365-313x.2008.03622.x.
doi: 10.1111/j.1365-313x.2008.03622.x
URL
|
[24] |
Xu G Y, Rocha P S C F, Wang M L, Xu M L, Cui Y C, Li L Y, Zhu Y X, Xia X J. A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis[J]. Planta, 2011, 234(1):47-59.doi: 10.1007/s00425-011-1386-z.
doi: 10.1007/s00425-011-1386-z
URL
|
[25] |
doi: 10.19694/j.cnki.issn2095-2457.2020.26.59
|
|
Su Z H, Li S J, Tian C G, Zhou Y P. Transcriptional activation activity analysis of plant calmodulin-like CML37[J]. Science & Technology Vision, 2020(26):155-156.
|
[26] |
周硕, 刘永伟, 董福双, 杨帆, 赵和, 柴建芳, 吕孟雨, 孙果忠, 王海波. 小麦类钙调素 TaCML79基因的克隆和表达分析[J]. 华北农学报, 2016, 31(6):1-6.doi: 10.7668/hbnxb.2016.06.001.
doi: 10.7668/hbnxb.2016.06.001
|
|
Zhou S, Liu Y W, Dong F S, Yang F, Zhao H, Chai J F, Lü M Y, Sun G Z, Wang H B. Cloning and expression analysis of TaCML79 in wheat[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(6):1-6.
|
[27] |
Yin X M, Huang L F, Zhang X, Wang M L, Xu G Y, Xia X J. OsCML4 improves drought tolerance through scavenging of reactive oxygen species in rice[J]. Journal of Plant Biology, 2015, 58(1):68-73.doi: 10.1007/s12374-014-0349-x.
doi: 10.1007/s12374-014-0349-x
URL
|
[28] |
doi: 10.3969/j.issn.1001-3601.2010.02.011
|
|
Ma C, Yi Y, Zhang X M, Gao W. Effect of the regulation of plant physiology on calcium ion[J]. Guizhou Agricultural Sciences, 2010, 38(2):36-41.
|
[29] |
doi: 10.1360/SSPMA-2020-0442
|
|
Li X, Qi H, Huang Y D, Shuai J W. Network dynamics of calcium signal and cell regulation signal[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(3):99-111.
|
[30] |
段琼, 王晓宇, 霍红雁, 何智彪, 张丽雪, 刘栩铭, 张洪雨, 孟迪, 张继星. 蓖麻环核苷酸门控离子通道 RcCNGC2克隆与盐胁迫下表达分析[J]. 华北农学报, 2020, 35(4):79-86.doi: 10.7668/hbnxb.20190904.
doi: 10.7668/hbnxb.20190904
|
|
Duan Q, Wang X Y, Huo H Y, He Z B, Zhang L X, Liu X M, Zhang H Y, Meng D, Zhang J X. Cloning and characterization of RcCNGC2 gene of Ricinus communis L.cyclic nucleotide-gated channel expression analysis under salt stress[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(4):79-86.
|