[1] 王汉中. 以新需求为导向的油菜产业发展战略[J]. 中国油料作物学报, 2018, 40(5):613-617.doi:10.7505/j.issn.1007-9084.2018.05.001. Wang H Z.New demand oriented oilseed rape industry developing strategy[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5):613-617. [2] Food and agriculture organization of the United Nations Production, Crops. FAOSTAT[DB/OL]. 2017-9-26.http://faostat3.fao.org/browse/Q/QC/E. [3] Liang X F, Rollins J A. Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum[J]. Phytopathology, 2018, 108(10):1128-1140. doi:10.1094/PHYTO-06-18-0197-RVW. [4] 官春云, 李方球, 陈社员. 双低油菜湘油15号对菌核病抗性研究简报[J]. 作物研究, 2001,15(3):33. doi:10.3969/j.issn.1001-5280.2001.03.012. Guan C Y, Li F Q, Chen S Y. Brief report of characterization of stem rot resistance in the double-low rapeseed cultivar Xiangyou 15[J]. Crop Research,2001,15(3):33. [5] 齐绍武,官春云,刘春林.甘蓝型油菜品系一些酶的活性与抗菌核病的关系[J].作物学报,2004,30(3):270-273. doi:10.3321/j.issn:0496-3490.2004.03.015. Qi S W, Guan C Y, Liu C L. Relationship between some enzyme activity and resistance to Sclerotinia sclerotiorum of rapeseed cultivars[J]. Acta Agronomica Sinica,2004, 30(3):270-273. [6] Wen L, Tan T L, Shu J B,Chen Y, Liu Y, Yang Z F, Zhang Q P, Yin M Z, Tao J, Guan C Y. Using proteomic analysis to find the proteins involved in resistance against Sclerotinia sclerotiorum in adult Brassica napus[J]. European Journal of Plant Pathology, 2013,137(3):505-523. doi:10.1007/s10658-013-0262-z. [7] Wang Z R, Wan L L, Xin Q, Chen Y, Zhang X H, Dong F M, Hong D F, Yang G S. Overexpression of OsPGIP2 confers Sclerotinia sclerotiorum resistance in Brassica napus through increased activation of defense mechanisms[J]. Journal of Experimental Botany, 2018,69(12):3141-3155. doi:10.1093/jxb/ery138. [8] 贾承国,向珣,王思周,汪俏梅.茉莉酸类化合物在植物防卫反应中的作用[J]. 细胞生物学杂志,2006,28(1):57-60. doi:10.3969/j.issn.1674-7666.2006.01.013. Jia C G, Xiang X,Wang S Z,Wang Q M.The role of jasmonate in plant defense response[J]. Chinese Journal of Cell Bio1ogy, 2006,28(1):57-60. [9] 刘庆霞,李梦莎,国静. 茉莉酸生物合成的调控及其信号通路[J]. 植物生理学报,2012,48(9):837-844.doi:10.13592/j.cnki.ppj.2012.09.013. Liu Q X, Li M S,Guo J.Regulation of jasmonic acid biosynthesis and jasmonic acid signaling pathway[J]. Plant Physiology Journal, 2012, 48(9):837-844. [10] Wu J, Zhao Q, Yang Q Y, Liu H, Li Q Y, Yi X Q, Cheng Y, Guo L, Fan C C, Zhou Y M. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus[J]. Sci Rep,2016(6):19007. doi:10.1038/srep19007. [11] Wang Z, Tan X L, Zhang Z Y, Gu S L, Li G Y, Shi H F. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling[J]. Plant Sci, 2012, 184(9):75-82. doi:10.1016/j.plantsci.2011.12.013. [12] Liu F, Li X X, Wang M R, Wen J, Yi B, Shen J X, Ma C Z, Fu T D, Tu J X.Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection[J]. Plant Biotechnol J, 2018, 16(4):911-925. doi:10.1111/pbi.12838. [13] 郝向阳, 孙雪丽, 王天池, 吕科良,赖钟雄,程春振. 植物PAL基因及其编码蛋白的特征与功能研究进展[J]. 热带作物学报, 2018, 39(7):1452-1461. doi:10.3969/j.issn.1000-2561.2018.07.028. Hao X Y,Sun X L, Wang T C, Lü K L, Lai Z X, Cheng C Z.Characteristics and functions of plant phenylalanine ammonia lyase genes and the encoded proteins[J]. Chinese Journal of Tropical Crops, 2018, 39(7):1452-1461. [14] Erdemoglu N,Ozkan S,Tosun F. Alkaloid profile and antimicrobial activity of Lupinus angustifolius L. alkaloid extract[J]. Phytochemistry Reviews, 2007,6(1):197-201. doi:10.1007/s11101-006-9055-8. [15] Erdemoglu N,Ozkan S,Duran A,Tosun F. GC-MS analysis and antimicrobial activity of alkaloid extract from Genista vuralii[J]. Pharmaceutical Biology, 2009, 47(1):81-85. doi:10.1080/13880200802448674. [16] Zarinpanjeh N, Motallebi M, Zamani M R, Ziaei M.Enhanced resistance to Sclerotinia sclerotiorum in Brassica napus by co-expression of defensin and chimeric chitinase genes[J]. Journal of Applied Genetics, 2016, 57(4):417-425. doi:10.1007/s13353-016-0340-y. [17] Wippich C,Wink M. Biological properties of alkaloids. Influence of quinolizidine alkaloids and gramine on the germination and development of powdery mildew, Erysiphe graminis f. sp. Hordei[J]. Experientia,1985,41(11):1477-1479. doi:10.1007/bf01950046. [18] Zhao W M, Wolfender J L,Hostettmann K,Xu R S, Qin G W. Antifungal alkaloids and limonoid derivatives from Dictamnus dasycarpus[J]. Phytochemistry,1998,47(1):7-11. doi:10.1016/s0031-9422(97)00541-4. [19] Cheng S H, Willmann M R, Chen H C, Sheen J. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family[J]. Plant Physiolog, 2002, 129(2):469-485. doi:10.1104/pp.005645. [20] Harmon A C, Gribskov M, Harper J f, Harmon A C, Gribskov M, Harper J F. CDPKs a kinase for every Ca 2+ signal?[J]. Trends in Plant Science, 2000,5(4):154-159. doi:10.1016/S1360-1385(00)01577-6. [21] Yamniuk A P, Vogel H J. Structural investigation into the differential target enzyme regulation displayed by plant calmodulin isoforms[J]. Biochemistry, 2005, 44(8):3101-3111. doi:10.1021/bi047770y. [22] Lee S H, Johnson J D, Walsh M P, Van Lierop J E, Sutherland C, Xu A,Snedden W A, Kosk-Kosicka D, Fromm H, Narayanan N, Cho M J. Differential regulation of Ca2+/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca2+ concentration[J]. Biochem Journal, 2000, 350(1):299-306. doi:10.1042/0264-6021:3500299. [23] Batistic O, Kudla J. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network[J]. Planta, 2004, 219(6):915-924.doi:10.1007/s00425-004-1333-3. [24] Batisti O, Kudla J. Analysis of calcium signaling pathways in plants[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2012, 1820(8):1283-1293. doi:10.1016/j.bbagen.2011.10.012. [25] 吕琳慧, 徐幼平, 任至玄,康冬,王继鹏,蔡新忠. Ca2+信号通路对本氏烟叶位介导的核盘菌抗性的影响[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6):605-610. doi:10.3785/j.issn.1008-9209.2014.03.131. Lü L H, Xu Y P, Ren Z X, Kang D, Wang J P, Cai X Z. Effect of Ca2+ signaling pathway on leaf position-associated resistance to Sclerotinia sclerotiorumin in Nicotiana benthamiana[J]. Journal of Zhejiang University(Agriculture and Life Sciences),2014, 40(6):605-610. [26] 张秋平, 文李, 王峰, 廖志强,李慧,刘睿洋,官春云.油菜钙依赖蛋白激酶BnCDPK1 的克隆和表达分析[J]. 植物遗传资源学报, 2014(6):1320-1326. doi:10.13430/j.cnki.jpgr.2014.06.021. Zhang Q P, Wen L, Wang F, Liao Z Q, Li H, Liu R Y, Guan C Y. Molecular cloning and expression analysis of calcium-dependent protein kinase BnCDPK1 in Brassica napus[J]. Journal of Plant Genetic Resources, 2014(6):1320-1326. [27] Ding Y J, Mei J Q, Chai Y R, Yu Y, Shao C G, Wu Q N, Disi J O, Li Y H, Wan H F, Qian W.Simultaneous transcriptome analysis of host and pathogen highlights the interaction between Brassica oleracea and Sclerotinia sclerotiorum[J]. Phytopathology, 2019,109(4):542-550. doi:10.1094/PHYTO-06-18-0204-R. |