[1] 张振乾,肖 钢,谭太龙,等.高油酸油菜研究进展及其前景展望[J].作物杂志,2009(5):1-6. [2] Jung J H,Kim H,Go Y S,et al.Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents[J].Plant Cell Reports,2011,30(10):1881-1892. [3] 肖 钢,张宏军,彭 琪,等.甘蓝型油菜油酸脱氢酶基因(fad2)多个拷贝的发现及分析[J].作物学报,2008,34(9):1563-1568. [4] Zhang Z Q,Xiao G,Liu R Y,et al.Proteomic analysis of differentially expressed proteins between Xiangyou 15 variety and the mutant M15[J].Frontiers of Biology,2014,9(3):234-243. [5] Suresha G S,Santha I M.Molecular cloning and in silico analysis of novel oleate desaturase gene homologues from Brassica juncea through sub-genomic library approach[J].Plant Omics,2013,6(1):55-64. [6] Karine V,Maarten D B,Nele H,et al.Ozone effects on yield quality of spring oilseed rape and broccoli[J].Atmospheric Environment,2012,47:76-83. [7] 官 梅,李 栒.高油酸油菜品系农艺性状研究[J].中国油料作物学报,2008,30(1):25-28. [8] Liu F L,Wang W J,Sun X T,et al.RNA-Seq revealed complex response to heat stress on transcriptomic level in Saccharina japonica(Laminariales,Phaeophyta)[J].Journal of Applied Phycology,2014,26(3):1585-1596. [9] Li Y,Wang N,Zhao F T,et al.Changes in the transcriptomic profiles of maize Roots in response to iron-deficiency stress[J].Plant Molecular Biology,2014,85(4/5):349-363. [10] Salgado L R,Koop D M,Pinheiro D G,et al.De novo transcriptome analysis of Hevea brasiliensis tissues by RNA-seq and screening for molecular markers[J].BMC Genomics,2014,15:236. [11] Wu W W,Wang G,Baek S J,et al.Comparative study of three protcomic quantitative methods,DIGE,cICAI and iiTRAQ,using 2D gel-or LC-MALDI TOF/TOF[J].Protcomc Res,2006,5(3):651-658. [12] Wang J P,Mei H,Zheng C,et al.The metabolic regulation of sporulation and parasporal crystal formation in Bacillus thuringiensis revealed by transcriptomics and proteomics[J].Molecular & Cellular Proteomics,2013,12(5):1363-1376. [13] Lan P,Li W F,Schmidt W.Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis Roots reveals multiple levels of gene regulation[J].Molecular & Cellular Proteomics,2012,11(11):1156-1166. [14] Dyhrman S T,Jenkins B D,Rynearson T A,et al.The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse Phosphorus stress response[J].PLoS One,2012,7(3):0033768. [15] Gonzalez L,El K W,Ju C,et al.Integrated transcriptomic and proteomic profiling of white spruce stems during thetransition from active growth to dormancy[J].Plant Cell and Environment,2012,35(4):682-701. [16] Kuss C,Gan C S,Gunalan K,et al.Quantitative proteomics reveals new insights into erythrocyte invasion by Plasmodium falciparum[J].Molecular & Cellular Proteomics,2012,11(2):010645. [17] Robbins M L,Roy A,Wang P H,et al.Comparative proteomics analysis by DIGE and iTRAQ provides insight into the regulation of phenylpropanoids in maize[J].Journal of Proteomics,2013,93(SI):254-275. [18] Clark M E,He Z L,Redding A M,et al.Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms:Carbon and energy flow contribute to the distinct biofilm growth state[J].BMC Genomics,2012,13:138. [19] 张秋萍.甘蓝型油菜与菌核菌互作的转录组学研究[D].长沙:湖南农业大学,2014. [20] Wen L,Tan T L,Shu J B,et al.Using proteomic analysis to find the proteins involved in resistance against Sclerotinia sclerotiorum in adult Brassica napus[J].European Journal of Plant Pathology,2013,137(3):505-523. [21] Livak K J,Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔCT) Method[J].Methods(San Diego,Calif.),2001,25(4):402-408. [22] Bauer S,Schott A K,Illarionova V,et al.Biosynthesis of tetrahydrofolate in plants:Crystal structure of 7,8-dihydroneopterin aldolase from Arabidopsis thaliana reveals a novel adolase class[J].Journal of Molecular Biology,2004,339(4):967-979. [23] Lopez P,A Lacks S.A bifunctional protein in the folate biosynthetic pathway of Streptococcus pneumoniae with dihydroneopterin aldolase and hydroxymethyldihydropterin pyrophosphokinase activities[J].J Bacteriol,1993,175(8):2214-2220. [24] De Lorenzo G,Ferrari S.Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi[J].Current Opinion in Plant Biology,2002,5(4):295-299. [25] Deo A,Shastri N V.Purification and characterization of polygalacturonase-inhibitory proteins from Psidium guajava Linn.(guava)fruit[J].Plant Science,2003,164(2):147-156. [26] Azevedo C,Betsuyaku S,Peart J A,et al.Role of SGT1in resistance protein accumulation in plant immunity[J].EMBO Journal,2006,25(9):2007-2016. [27] Tör M,Gordon P,Cuzick A,et al.Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes[J].American Society of Plant Biologists,2002,14(5):993-1003. [28] Gomez-Gomez L,Boller T.FLS2:an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis[J].Molecular Cell,2000,5(6):1003-1011. [29] Tang J Y,Zhu X D,Wang Y Q,et al.Semi-dominant mutations in the CC-NB-LRR-type R gene,NLS1,Lead to constitutive activation of defense responses in rice[J].Plant Journal,2011,66(6):996-1007. [30] Forsthoefel N R,Dao T P,Vernon D M.PIRL1and PIRL9,encoding members of a novel plant-specific family of leucine-rich repeat proteins,are essential for differentiation of microspores into pollen[J].Planta,2010,232(5):1101-1114. [31] Chico J M,Raices M,Tellez-Inon M T,et al.A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants[J].Plant Physiology,2002,128(1):256-270. [32] 付力文.水稻钙依赖性蛋白激酶oscpk10和oscpk20在植物抗病防卫反应中的功能研究[D].北京:北京大学,2013. [33] 赵永山.胼胝质对胞间连丝的修饰在大豆抗病毒侵染过程中的作用[D].保定:河北农业大学,2010. [34] 姚贵滨.大豆抵抗SMV长距离运输机制的研究[D].保定:河北农业大学,2011. [35] 吴思思,李文龙,肖东强,等.大豆不同花叶病毒抗性品种胼胝质荧光标记初探[J].植物遗传资源学报,2013,14(1):132-140. [36] Pontier D,Godiard L,MarcoY,et al.Hsr203J,a tobacco gene whose activation is rapid,highly localized and specific for incompatible plant/pathogen interactions[J].Plant Journal,1994,5(4):507-521. [37] Belbahri L,Boucher C,Thierry C,et al.A local accumulation of the Ralstonia solanacearum PopA protein in transgenic tobacco renders a compatible plant-pathogen interaction incompatible[J].The Plant Journal,2001,28(4):419-430. [38] 周 鑫.番茄叶霉菌基因 CfHNNI1 诱导植物非寄主抗病性的功能分析[D].杭州:浙江大学,2006. |