[1] Ni Z,Hu Z,Jiang Q,et al.Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana [J].Biochemical and Biophysical Research Communications,2012,427(2):330-335.
[2] Xie Z X,Allen E,Fahlgren N,et al.Expression of Arabidopsis MIRNA genes[J].Plant Physiology,2005,138(4):2145-2154.
[3] Zhou X,Ruan J,Wang G,et al.Characterization and identification of microRNA core promoters in four model species[J].PLOS Computational Biology,2007,3(3):e37.
[4] Vaucheret H,Mallory A C,Bartel D P.AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1[J].Molecular Cell,2006,22(1):129-136.
[5] Allen R S,Li J,Stahle M I,et al.Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(41):16371-16376.
[6] Sunkar R,Kapoor A,Zhu J K.Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J].The Plant Cell,2006,18(8):2051-2065.
[7] Wang J W,Wang L J,Mao Y B,et al.Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis[J].The Plant Cell,2005,17(8):2204-2216.
[8] Ni Z,Hu Z,Jiang Q,et al.GmNFYA3,a target gene of miR169,is a positive regulator of plant tolerance to drought stress[J].Plant Molecular Biology,2013,82(1-2):113-129.
[9] Zhang Z,Yu J,Li D,et al.PMRD:plant microRNA database[J].Nucleic Acids Research,2010,38(Database issue):D806-D813.
[10] Lescot M,Déhais P,Thijs G,et al.Plant CARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J].Nucleic Acids Research,2002,30(1):325-327.
[11] Higo K,Ugawa Y,Iwamoto M,et al.Plant cis-acting regulatory DNA elements (PLACE) database:1999[J].Nucleic Acids Research,1999,27(1):297-300.
[12] Li W X,Oono Y,Zhu J,et al.The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J].The Plant Cell,2008,20(8):2238-2251.
[13] Zhao B,Liang R,Ge L,et al.Identification of drought-induced microRNAs in rice[J].Biochemical and Biophysical Research Communications,2007,354(2):585-590.
[14] Yamaguchi-Shinozaki K,Shinozaki K.Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters[J].Trends in Plant Science,2005,10(2):88-94.
[15] Hsieh T H,Lee J T,Charng Y Y,et al.Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress[J].Plant Physiology,2002,130(2):618-626.
[16] Kasuga M,Liu Q,Miura S,et al.Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J].Nature Biotechnology,1999,17(3):287-291.
[17] Lee J T,Prasad V,Yang P T,et al.Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield[J].Plant Cell and Environment,2003,26(7):1181-1190.
[18] Zhou X,Wang G,Zhang W.UV-B responsive microRNA genes in Arabidopsis thaliana [J].Molecular Systems Biology,2007,3:103. |