We aimed to reveal the potential effects of AM fungi on low temperature resistance of host plants,and provide reference for developing biological fertilizer and promoting agricultural sustainable development.Using pot experiment,the influences of AMF inoculation to biomass,total nitrogen(N),NO3--N,NH4+-N,protein,amino acid and relative N metabolism enzyme of maize seedlings were studied under low temperature stress.Study results showed that AMF inoculation increased aboveground biomass of maize seedlings compared with non-inoculation treatment under low temperature.Low temperature stress decreased total N,NO3--N and soluble protein content of maize leaf,and total N content of maize root,but increased NH4+-N content of maize leaf and soluble protein content of maize root.AMF inoculation could increase total N,NO3--N and soluble protein content of unit mass maize leaf.At ambient temperature,AMF inoculation could increase NH4+-N concentration of maize leaf,however at low temperature,AMF inoculation decreased NH4+-N concentration of maize leaf.Low temperature decreased each amino acid and total amino acid content of maize root,AMF inoculation increased each amino acid and total amino acid content of maize root.Both AMF inoculation and temperature significantly impacted NR and GPT activity,however,GS activity only significantly was impacted by temperature,GOT activity only was impacted by AMF inoculation.Study results showed that low temperature intensely damaged the growth and N absorption metabolism of maize seedling.Under low temperature stress,AMF inoculation could improve physiological growth and N absorption metabolism enzyme activity of maize through personal N absorption and transportation,and further to increase low temperature resistance of maize seedlings.
CHEN Xiao-ying
,
SONG Feng-bin
,
ZHU Xian-can
,
SUN Lu-ying
,
MA Fu
,
LIU Sheng-qun
. Effect of Arbuscular Mycorrhizal Fungus on Nitrogen Metabolism of Maize Seedlings under Low Temperature Stress[J]. Acta Agriculturae Boreali-Sinica, 2014
, 29(4)
: 205
-212
.
DOI: 10.7668/hbnxb.2014.04.036
[1] Chalot M,Blaudez D,Brun A.Ammonia:a candidate for nitrogen transfer at the mycorrhizal interface[J].Trends in plant science,2006,11(6):263-266.
[2] Lam H M,Coschigano K T,Oliveira I C,et al.The molecular-genetics of nitrogen assimilation into amino acids in higher plants[J].Annual Review of Plant Physioloty and Plant Molecular Biology,1996,47(1):569-593.
[3] 许振柱,周广胜.植物氮代谢及其环境调节研究进展[J].应用生态学报,2004,15(3):511-516.
[4] Jin H,Pfeffer P E,Douds D D,et al.The uptake,metabolism,transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis[J].The New Phytologist,2005,168(3):687-696.
[5] 吉春龙,田萌萌,马继芳,等.丛枝菌根真菌对植物营养代谢与生长影响的研究进展[J].浙江师范大学学报:自然科学版,2010,33(3):303-309.
[6] Charest C,Dalpé Y,Brown A.The effect of vesicular-arbuscular mycorrhizae and chilling on two hybrids of Zea mays L.[J].Mycorrhiza,1993,4(2):89-92.
[7] 郭绍霞,马颖,李敏.丛枝菌根真菌对彩叶草耐寒性的影响[J].青岛农业大学学报:自然科学版,2009,26(3):174-176,180.
[8] Phillips J M,Hayman D S.Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J].Transactions of the British mycological Society,1970,55(1):158-I61,IN16-IN18.
[9] 王小纯,熊淑萍,马新明,等.不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响[J].生态学报,2005,25(4):802-807.
[10] 李影林.临床医学检验手册[M],长春:吉林科学技术出版社,1987:363-367.
[11] Jackson L E,Burger M,Cavagnaro T R.Roots,nitrogen transformations,and ecosystem services[J].Annual Review of Plant Biology,2008,59(1):341-363.
[12] Smith S E,Gianinazzi-Pearson V,Koide R, et al. Nutrient transport in mycorrhizas:structure,physiology and consequences for efficiency of the symbiosis[J].Plant and Soil,1994,159(1):103-113.
[13] Kronzucker H J,Siddiqi M Y,Glass A D.Conifer root discrimination against soil nitrate and the ecology of forest succession[J].Nature,1997,385(6611):59-61.
[14] Guescini M,Zeppa S,Pierleoni R, et al. The expression profile of the tuber borchii nitrite reductase suggests its positive contribution to host plant nitrogen nutrition[J].Current genetics,2007,51(1):31-41.
[15] Kaldorf M,Schmelzer E,Bothe H.Expression of maize and fungal nitrate reductase genes in arbuscular mycorrhiza[J].Molecular Plant-Microbe Interactions:MPMI,1998,11(6):439-448.
[16] 孙宝启,李玉京.小麦灌浆过程中硝酸还原酶活性与籽粒蛋白质的积累[J].中国农业大学学报,1997,2(5):20-30.
[17] 戴廷波,曹卫星,孙传范,等.增铵营养对小麦光合作用及硝酸还原酶和谷氨酰胺合成酶的影响[J].应用生态学报,2003,14(9):1529-1532.
[18] 刘卫群,陈良存,甄焕菊,等.烟叶成熟过程中碳氮代谢关键酶对追施氮肥的响应[J].华北农学报,2005,20(3):74-78.
[19] Dixit V,Pandey V,Shyam R.Differential antioxidative responses to cadmium in roots and leaves of pea(Pisum sativum L.cv.Azad)[J].Journal of Experimental Botany,2001,52(358):1101-1109.