Isolation and Identification of a Humic Substances Bacterial Strain

  • CHEN Nan ,
  • DENG Xiao ,
  • ZOU Yu-kun ,
  • WU Chun-yuan ,
  • LI Qin-fen
Expand
  • 1. Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China;
    2. College of Environment and Plant Protection of Hainan University, Haikou 570228, China;
    3. Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agricultural, Danzhou 571737, China

Received date: 2013-05-03

  Online published: 2014-10-14

Abstract

The humus respiration is a new way of microbial energy metabolism.And the research about strains resources becomes the focus point.A facultative anaerobic humus- reducing bacterium,designated HN02,was isola- ted from cassava dregs composting.Strain HN02 is a gram- positive,short rod- shaped,gelatin hydrolysis and nitrate reduction- negative bacterium.Optimal growth salt was 1% (NaCl); optimal growth temperature was 30 ℃ and opti- mal pH was at 7. 5- 8. 5. Analysis of 16S rDNA of HN02 indicated that the closest phylogenetic relative among the valid species was Arthrobacter tecti,with 99. 4% 16S rDNA similarity.Strain HN02 can utilize AQDS via anaerobic enrichment procedure with glucose as the electron donor and AQDS as the sole terminal electron acceptor.The re- duction ratio of AQDS was 40%.Thus,the humus- reducing of Arthrobacter tecti HN02 is here reported for the first time and it can provides the theoretical basis for microbial systems with characteristics of humus reduction.

Cite this article

CHEN Nan , DENG Xiao , ZOU Yu-kun , WU Chun-yuan , LI Qin-fen . Isolation and Identification of a Humic Substances Bacterial Strain[J]. Acta Agriculturae Boreali-Sinica, 2013 , 28(4) : 179 -183 . DOI: 10.3969/j.issn.1000-7091.2013.04.033

References

[1] Stevenson F J. Humus chemistry: genesis,composition,re-actions[M]. John Wiley: New York,1994.
[2] Cervantes F J,de Bok F A M,Tuan D D,et al. Reduction of humic substances by halorespiring,sulphate-reducing and methanogenic microorganisms[J]. Environmental Mi-crobiology,2002,4(1): 51-57.
[3] Benz M,Schink B,Brune A. Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria[J]. Applied and Environmental Microbiology,1998,64(11): 4507-4512.
[4] Wang Y B,Wu C Y,Wang X J,et al. The role of humic substances in the anaerobic reductive dechlorination of 2,4-D by Comamonas koreensis strain CY01[J]. Journal of Hazardous Materials,2009,164(2-3): 941-947.
[5] Kappler A,Straub K L. Geomicrobiological cycling of iron [J]. Reviews Mineralogy and Geochemistry,2005,59 (1): 85-108.
[6] Weber K A,Achenbach L A,Coates J D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduc-tion[J] . Nature Reviews Microbiology,2006,4: 752-764.
[7] Porsch K,Dippon U,Rijal M L,et al. In-situ magnetic susceptibility measurements as a tool to follow geomicro-biological transformation of Fe minerals[J]. Environmen-tal Science and Technology,2010,44(10): 3846-3852.
[8] Scott D T,McKnight D M,Blunt-Harris E L,et al. Qui-none moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms [J]. Environmental Science and Technology,1998,32 (19): 2984-2989.
[9] Cory R M,McKnight D M. Fluorescence spectroscopy re-veals ubiquitous presence of oxidized and reduced qui-nones in dissolved organic matter[J]. Environmental Sci-ence and Technology,2005,39(21): 8142-8149.
[10] Jie Jiang,Irisbauer,Andreapaul,et al. Arsenic redox changes by microbially and chemically formed semiqui-none radicals and hydroquinones in a humic substance model quinone[J]. Environmental Science and Technol-ogy,2009,43(10): 3639-3645.
[11] Coates J D,Ellis D J,Blunt Harris E L,et al. Recovery of humic-reducing bacteria from a diversity of environ-ments[J]. Applied and Environmental Microbiology,1998,64(4): 1504-1509.
[12] Fredrickson J K,Zachara J M,Kennedy D W,et al. Bio-genic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacte-rium[J]. Geochimica et Cosmochimica Acta,1998,62 (19-20): 3239-3257.
[13] Van Trump J I,Sun Y,Coates J D. Microbial interactions with humic substances[J]. Advances in Applied Micro-biology,2006,60: 55-96.
[14] Luijten M L,Weelink S A,Godschalk B,et al. Anaero-bic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms [J]. FEMS Microbiology Ecology,2004,49 (1): 145-150.
[15] O'Loughlin E J. Effects of electron transfer mediators on the bioreduction of lepidocrocite by Shewanella putrefa-ciens CN32 [J]. Environmental Science and Technolo-gy,2008,42(18): 6876-6882.
[16] Wrighton K C,Agbo P,Warnecke F,et al. A novel ecologi-cal role of the firmicutes identified in thermophilic microbi-al fuel cells[J] . ISME J,2008,2(11): 1146-1156.
[17] Li X M,Zhou S G,Li F B,et al. Fe () oxide reduc-tion and carbon tetrachloride dechlorination by a newly i-solated Klebsiella pneumoniae strain L17 [J]. Journal of Applied Microbiology,2009,106(1): 130-139.
[18] Chunyuan Wu,Li Zhuang,Shungui Zhou,et al. Fe()-enhanced anaerobic transformation of 2,4-dichlorophe-noxyacetic acid byan iron-reducing bacterium Comamonas koreensis CY01[J] . FEMS,2010,71(1): 106-113.
[19] 武春媛,李芳柏,周顺桂,等. 成团泛菌 MFC-3 的分离 鉴定及其腐殖质/Fe() 呼吸特性研究[J]. 环境科 学,2010,31(1): 237-242
[20] Linxian Ding,Taketo Hirose,Akira Yokota. Four novel Arthrobacter species isolated from filtration substrate [J]. International Journal of Systematic and Evolution-ary Microbiology,2009,59(4): 856-862.
[21] Westerberg K,Elvang A M,Stackebrandt E,et al. Ar-throbacter chlorophenolicus sp. nov.,a new species ca-pable of degrading high concentrations of 4-chlorophenol [J]. International Journal of Systematic and Evolution-ary Microbiology,2000,50(6): 2083-2092.
[22] Borodina E,Kelly D P,Schumann P,et al. Enzymes of dimethylsulfone metabolism and the phylogenetic char-acterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov.,Arthrobacter methylotrophus sp. nov.,and Hyphomicrobium sulfonivorans sp. nov.[J]. Archives of Microbiology,2002,177: 173-183.
[23] Kuhn D A,Starr M P. Arthrobacter atrocyaneus,n. sp.,and its blue pigment[J]. Archives of Microbiology,1960,36: 175-181.
[24] Hong Y G,Guo J,Xu Z C,et al. Humic substances act as electron acceptor and redox mediator for microbial dis-similatory azoreduction by Shewanella decolorationis S12 [J]. Journal of Microbiology Biotechnology,2007,17 (3): 428-437.
[25] Kim H S,Pfaender F K. Effects of microbially mediated redox conditions on PAH-soil interactions[J] . Environmental Sci-ence and Technology,2005,39(23):9189-9196.
[26] Ma C,Zhuang L,Zhou S G,et al. Alkaline extracellular reduction: isolation and characterization of an alkaliphlic and halotolerant bacterium,Bacillus pseudofirmus MC02 [J]. Journal of Applied Microbiology,2012,112 (5 ): 883-891.
[27] Chunyuan Wu,Li Zhuang,Shungui Zhou,et al. Coryne-bacterium humireducens sp. nov.,an alkaliphilic humic-reducing bacterium isolated from a microbial fuel cell [J]. International Journal of Systematic and Evolution-ary Microbiology,2011,61: 882-887.
[28] 朱希坤,李清艳,蔡宝立. 节杆菌 AD26 的分离鉴定及 其与假单胞菌 ADP 对阿特拉津的联合降解[J]. 农业 环境科学学报,2009,28(3): 627-632.
[29] 解秀平,闫艳春,刘萍萍,等. 降解甲基对硫磷的节杆 菌 L4 菌株的分离和降解特性研究[J]. 环境科学学 报,2006,26(10): 1637-1642.
[30] 蒋永荣,赵凯鹏,陈欢. 节杆菌菌株 LZP08X 的分离 鉴定及其降解苯酚特性[J]. 生物技术,2007,1(17): 63-66.
[31] 夏振远,雷丽萍,吴玉萍,等. 降烟碱细菌-烟草节杆菌 K9 的分离及鉴定中国烟草科学[J]. 中国烟草科学,2006(2): 1-4.
[32] 江月,周建刚,邹煜平,等. 一株有固氮能力的节杆 菌菌株的分离和初步鉴定[J]. 华中师范大学学报: 自然科学版,2004,2(38): 210-213.
Outlines

/