Grain number is one of the important components of rice yield which is a typical quantitative trait and can easily be influenced by genetic background and environmental factors.Single segment substitution lines (SSSLs) can effectively reduce the interference of the genetic background.We developed a set of genome- wide SSSLs carrying Nipponbare introgression segments in the background of Guangluai 4.Quantitative trail loci (QTL) analysis involved one- way ANOVA and Dunnett' s test for comparing SSSLs with the recurrent parent Guangluai 4 (P 0.001).We detected 27 QTLs for grain number distributed on 11 rice chromosomes except chromosome 10,of which 2 had negative effect and the others positive effect.The additive effect of these QTLs ranged from-37.5 to 96.6,with additive effect percentages-29.07% to 88.57%.These results provide useful information for exploring and using new grain number related resources.
ZHU Jin-yan1
,
YANG Mei
,
WANG Zhong-de
,
WANG Jun
,
ZHOU Yong
,
YANG Jie
,
FAN Fang-jun
,
LI Wen-qi
,
LIANG Guo-hua
,
ZHONG Wei-gong
. Identification of Grain Number Quantitative Trait Loci with Single Segment Substituted Lines in Rice[J]. Acta Agriculturae Boreali-Sinica, 2013
, 28(4)
: 23
-30
.
DOI: 10.3969/j.issn.1000-7091.2013.04.005
[1] Nishimura A,Ashikari M,Lin S,et al. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems[J]. Proc Natl Acad Sci USA,2005,102(33): 11940-11944.
[2] Xing Y,Zhang Q. Genetic and molecular bases of rice yield[J]. Annu Rev Plant Biol,2010,61: 421-442.
[3] Weng J,Gu S,Wan X,et al. Isolation and initial charac-terization of GW5,a major QTL associated with rice grain width and weight [J]. Cell Res,2008,18 (12): 1199-1209.
[4] Li S,Qian Q,Fu Z,et al. Short panicle 1 encodes a puta-tive PTR family transporter and determines rice panicle size[J]. Plant J,2009,58: 592-605.
[5] Komatsu K,Maekawa M,Ujiie S,et al. LAX and SPA: ma-jor regulators of shoot branching in rice [J]. Proc Natl Acad Sci USA,2003,100: 11765-11770.
[6] Zhang Y,Luo L,Xu C,et al. Quantitative trait loci for panicle size,heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa ) [J]. Theor Appl Genet,2006,113: 361-368.
[7] Xing Y Z,Tang W J,Xue W Y,et al. Fine mapping of a major quantitative trait loci,qSSP7,controlling the number of spikelets per panicle as a single Mendelian factor in rice[J]. Theor Appl Genet,2008,116: 789-796.
[8] Deshmukh R,Singh A,Jain N,et al. Identification of can-didate genes for grain number in rice (Oryza sativa L. ) [J]. Funct Integr Genomics,2010,10: 339-347.
[9] Ashikari M,Sakakibara H,Lin S,et al. Cytokinin oxidase regulates rice grain production [J]. Science,2005,309: 741-745.
[10] Xue W,Xing Y,Weng X,et al. Natural variation in Ghd7 is an important regulator of heading date and yield poten-tial in rice[J]. Nat Genet,2008,40: 761-767.
[11] Yan W H,Wang P,Chen H X,et al. A major QTL,Ghd8,plays pleiotropic roles in regulating grain produc-tivity,plant height,and heading date in rice[J]. Molec-ular Plant,2011,4(2): 319-330.
[12] Jiao Y,Wang Y,Xue D,et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nat Genet,2010,42(6): 541-544.
[13] Miura K,Ikeda M,Matsubara A,et al. OsSPL14 promotes panicle branching and higher grain productivity in rice [J]. Nat Genet,2010,42(6): 545-549.
[14] Young N D,Tanksley S D. Restriction fragment length polymorphism maps and the concept of graphical geno-types[J]. Theor Appl Genet,1989,77: 95-101.
[15] 刘冠明,李文涛,曾瑞珍,等.水稻单片段代换系代换片段 的QTL鉴定[J] .遗传学报,2004,31(12):1395-1400.
[16] McCouch S R,Doerge R W. QTL mapping in rice[J]. Trends Genet,1995,11: 482-487.
[17] Eshed Y,Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL[J]. Gnetics,1995,141: 1147-1162.
[18 ] 何风华,席章营,曾瑞珍,等 利用高代回交和分子标 记辅助选择建立水稻单片段代换系[J]. 中国农业科 学,2005,38: 1505-1513.
[19] 凌启鸿,张洪程,朱 佶. 小麦 小群体 壮个体 高结 累 高产栽培途径的研究 [J]. 江苏农学院学报,1983,4(1): 1-6.
[20] 黄耀祥. 半矮秆 早长根深 超高产 特优质中国超级 稻生态育种工程[J]. 广东农业科学,2001,3: 2-6.
[21] 杨守仁,张龙步,王进民. 水稻理想株型育种的理论 和方法初论[J]. 中国农业科学,1984,3: 6-12.
[22] 袁隆平. 杂交水稻超高产育种[J]. 杂交水稻,1997,12(6): 1-6.
[23] 周开达,汪旭东,李仕贵. 亚种间重穗型杂交稻研究 [J]. 中国农业科学,1997,30(5): 91-93.
[24] Zhang Y,Luo L,Xu C,et al. Quantitative trait loci forpanicle size,heading date and plant height co-segrega-ting in trait-performance derived near-isogenic lines of rice (Oryza sativa) [J]. Theor Appl Genet,2006,113 (2): 361-368.
[25] Tian F,Zhu Z,Zhang B,et al. Fine mapping of a quanti-tative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff. ) [J]. Theor Appl Genet,2006,113(4): 619-629.
[26] Xing Y Z,Tang W J,Xue W Y,et al. Fine mapping of a major quantitative trait loci,qSSP7,controlling the num-ber of spikelets per panicle as a single Mendelian factor in rice[J]. Theor Appl Genet,2008,116 (6): 789-796.
[27] Zhang Y,Luo L,Liu T,et al. Four rice QTLs controlling number of spikelets per panicle expressed the character-istics of single Mendelian gene in near isogenic back-grounds[J]. Theor Appl Genet,2009,118(6): 1035-1044.
[28] Liu T,Mao D,Zhang S,et al. Fine mapping SPP1,a QTL controlling the number of spikelets per panicle,to a BAC clone in rice (Oryza sativa) [J]. Theor Appl Genet,2009,118(8): 1509-1517.
[29] Ashikari M,Sakakibara H,Lin S,et al. Cytokinin oxidase regulates rice grain production [J]. Science,2005,309 (5735): 741-745.
[30] Li M,Tang D,Wang K,et al. Mutations in the F-box gene LARGER PANICLE improve the panicle architec-ture and enhance the grain yield in rice[J]. Plant Bio-technol J,2011,9: 1002-1013.
[31] Xue W,Xing Y,Weng X,et al. Natural variation in Ghd7 is an important regulator of heading date and yield poten-tial in rice[J]. Nat Genet,2008,40(6): 761-767.
[32] Yamamoto T,Kuboki Y,Lin SY,et al. Fine mapping of quantitative trait loci Hd1,Hd2,and Hd3,controlling heading date of rice,as single Mendelian factors [J]. Theor Appl Genet,1998,97: 37-44.
[33] Miura K,Ikeda M,Matsubara A,et al. OsSPL14 promotes panicle branching and higher grain productivity in rice [J]. Nat Genet,2010,42(6): 545-549.
[34] Jiao Y,Wang Y,Xue D,et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nat Genet,2010,42(6): 541-544.
[35] Huang X,Wei X,Sang T,et al. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nat Genet,2010,42(11): 961-967.
[36] Wang L,Wang A,Huang X,et al. Mapping 49 quantita-tive trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines [J]. TheorAppl Genet,2011,122(2): 327-340.
[37] Mei H,Luo L,Ying C,et al. Gene actions of QTLs affect-ing several agronomic traits resolved in a recombinant in-bred rice population and two testcross populations[J]. Theor Appl Genet,2003,107: 89-101.
[38] Liu T,Shao D,Kovi M R,et al. Mapping and validation of quantitative trait loci for spikelets per panicle and 1 000-grain weight in rice (Oryza sativa L. ) [J]. Theor Appl Genet,120(5): 933-942.
[39] Shan J X,Zhu M Z,Shi M,et al. Fine mapping and can-didate gene analysis of spd6,responsible for small pani-cle and dwarfness in wild rice(Oryza rufipogon Griff. ) [J]. Theor Appl Genet,2009,119(5): 827-836.