Expression Analysis of IFSI Gene in Isoflavonoids Pathway in Soybean

  • Lian Yun ,
  • LI Haichao ,
  • Wang Shufeng ,
  • Wu Yongkang ,
  • Li Jinying ,
  • Lei Chenfang ,
  • Lu Weiguo
Expand
  • Zhengzhou Subcenter of National Soybean Improvement Center,Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture,Institute of Industrial Crops,Henan Academy of Agricultural Sciences, Zhengzhou 450002,China

Received date: 2013-04-17

  Revised date: 2013-04-17

  Online published: 2014-10-14

Abstract

Previous studies have shown that isoflavone synthase (IFS) encode key enzymes in the isoflavonoids pathway in Soybean.There are two IFS homologues IFS1 and IFS2 in Soybean,The expression level of IFS1 gene in different tissues will be quantified by fluorescence quantitative PCR. The results revealed that the transcripts were widely distributed in all the tested tissues.IFS1 gene showed the higher expression level in the tender organs: root,stem, leaf germinating 7 days than that in the older organs: roots,stems,leaves growing 70 days. Expression level in seeds at 25 days and 45 days post anthesis were also lower,while with higher content in the mature embryo,suggesting that IFS1 gene has finished the Soybean isoflavone accumulation process in the early embryo formation.Further,the analysis of expression induced by abiotic treatments indicated that the genes were differentially regulated under IAA,ABA,PEG,NaCl,cold and wounding treatments. It will provide more knowledges on isoflavone biosynthesis and resistance to abiotic stress in Soybean.

Cite this article

Lian Yun , LI Haichao , Wang Shufeng , Wu Yongkang , Li Jinying , Lei Chenfang , Lu Weiguo . Expression Analysis of IFSI Gene in Isoflavonoids Pathway in Soybean[J]. Acta Agriculturae Boreali-Sinica, 2013 , 28(3) : 25 -29 . DOI: 10.3969/j.issn.1000-7091.2013.03.005

References

[1] Watanabe S,Uesugi S,Kikuchi Y.Isofiavones for prevention of cancer,cardiovascular diseases,gynecological problems and possible immune potentiation [J].Biomed Pharmacother,2002,56(6):302-312.
[2] Rochfor S,Panozzo J.Phytochemicals for health, the role of pulses[J].J Agric Food Chem,2007,55(20):7981-7994.
[3] Wang Y,Chen S,Yu O. Metabolic engineering of flavonoids in plants and microorganisms[J].Appl Microbiol Biotechnol,2011,91:949-956.
[4] 赵珺,黄玉珍,刘冰许. 大豆功能因子对小鼠生理性能的影响[J].河南农业科学,2010(3):103-105.
[5] Kosslak R M,Bohlool B B. Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side [J].Plant Physiolo,1984,75(1):125-130.
[6] Zhang J,Subramanian S,Stacey G,et al, Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti[J].The Plant Journal, 2009, 57(1):171-183.
[7] Reid D E,Ferguson B J,Hayashi S,et al.Molecular mechanisms controlling legume autoregulation of nodulation[J].Ann Bot,2011,108(5):789-795.
[8] Mortier V,Fenta B A,Martens C, et al. Search for nodulation- related CLE genes in the genome of Glycine max[J].J Exp Bot, 2011: 62(8):2571-2583.
[9] 韩粉霞,丁安林,孙君明. 高异黄酮含量大豆新品种中豆27 的选育及配套栽培技术[J]. 华北农学报, 2002 17(增刊:111-114
[10] Jung W,Yu O,Lau S M, et al.Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes [J]. Nat Biotechnol,2000(18):208-212.
[11] Pregelj L,McLanders J R,Gresshoff P M,et al. Transcription profiling of the isoflavone phenylpropanoid pathway in soybean in response to Bradyrhizobium japonicum inoculation [J].Functional Plant Biology,2010, 38(1):13-24.
[12] 张卓,王丕武,付永平,等. 大豆查尔酮异构酶基因的克隆及粟酒裂殖酵母表达载体的构建[J].河南农业科学, 2010(11):23-26.
[13] Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T) ) method[J].Methods,2001,25:402-408.
[14] Berger M,Rasolohery C A,Cazalis R,et al. Isoflavone accumulation kinetics in soybean seed cotyledons and hypocotyls: Distinct pathways and genetic controls [J].Crop Science, 2008, 48( 2):700-708.
[15] Kim J A,Chung I M. Change in isofiavone concentration of soybean ( Glycine max L.) seeds at different growth stages [J].J Sci Food Agric, 2007, 87(3):496-503.
[16] Dhaubhadel S,Gijzen M,Moy P, et al. Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isofiavonoid synthesis in soybean seeds[J]. Plant Physiol,2007,143(1):326-338.
[17] Graham T L. Flavonoid and isofiavonoid distribution in developing soybean seedling tissues and in seed and root exudates[J]. Plant Physiol, 1991, 95(2):594-603.
[18] Dixon R A. Natural products and plant disease resistance[J]. Nature, 2001, 411:843-847.
[19] Dixon R A,Paiva N L. Stress-induced phenylpropanoid metabolism[J]. Plant Cell, 1995,7:1085-1097.

[20] Cheng H,Yang H,Zhang D, et al. Polymorphisms of soybean isofiavone synthase and flavanone 3-hydroxylase genes are associated with soybean mosaic virus resistance[J]. Mol Breeding, 2010,25(1):13-24.
[21] Cheng H,Yu O,Yu D Y. Polymorphisms of IFS1 and IFS2 gene are associated with isofiavone concentrations in soybeanseeds [J].Plant Science, 2008, 175: 505 -512.
Outlines

/