[1] |
Niyogi K K, Li X P, Rosenberg V, Jung H S. Is PsbS the site of non-photochemical quenching in photosynthesis?[J]. Journal of Experimental Botany, 2005, 56(411):375-382.doi: 10.1093/jxb/eri056.
pmid: 15611143
|
[2] |
|
|
Zhou F S, Dong C, Wei F, Guo Y S, Wang R. Research progress of PsbS subunit in plant photosystem Ⅱ in non-photochemical quenching reaction[J]. Molecular Plant Breeding, 2025, 23(1):173-181.
|
[3] |
Gerotto C, Alboresi A, Giacometti G M, Bassi R, Morosinotto T. Role of PSBS and LHCSR in Physcomitrella patens acclimation to high light and low temperature[J]. Plant,Cell & Environment, 2011, 34(6): 922-932. doi: 10.1111/j.1365-3040.2011.02294.x.
|
[4] |
Głowacka K, Kromdijk J, Kucera K, Xie J Y, Cavanagh A P, Leonelli L, Leakey A D B, Ort D R, Niyogi K K, Long S P. Photosystem Ⅱ Subunit S overexpression increases the efficiency of water use in a field-grown crop[J]. Nature Communications, 2018, 9:868.doi: 10.1038/s41467-018-03231-x.
|
[5] |
Sacharz J, Giovagnetti V, Ungerer P, Mastroianni G, Ruban A V. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex Ⅱ to control non-photochemical quenching[J]. Nature Plants, 2017, 3(2):16225.doi: 10.1038/nplants.2016.225.
|
[6] |
Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions[J]. Plant Physiology, 2006, 141(2):391-396.doi: 10.1104/pp.106.082040.
pmid: 16760493
|
[7] |
Dong L Q, Tu W F, Liu K, Sun R X, Liu C, Wang K, Yang C H. The PsbS protein plays important roles in photosystem Ⅱ super complex remodeling under elevated light conditions[J]. Journal of Plant Physiology, 2015, 172:33-41.doi: 10.1016/j.jplph.2014.06.003.
|
[8] |
Endo T, Uebayashi N, Ishida S, Ikeuchi M, Sato F. Light energy allocation at PSⅡ under field light conditions:how much energy is lost in NPQ-associated dissipation?[J]. Plant Physiology and Biochemistry, 2014, 81:115-120.doi: 10.1016/j.plaphy.2014.03.018.
|
[9] |
Fan M R, Li M, Liu Z F, Cao P, Pan X W, Zhang H M, Zhao X L, Zhang J P, Chang W R. Crystal structures of the PsbS protein essential for photoprotection in plants[J]. Nature Structural & Molecular Biology, 2015, 22(9):729-735.doi: 10.1038/nsmb.3068.
|
[10] |
Krishnan-Schmieden M, Konold P E, Kennis J T M, Pandit A. The molecular pH-response mechanism of the plant light-stress sensor PsbS[J]. Nature Communications, 2021, 12:2291.doi: 10.1038/s41467-021-22530-4.
pmid: 33863895
|
[11] |
Kiss A Z, Ruban A V, Horton P. The PsbS protein controls the organization of the photosystem Ⅱ antenna in higher plant thylakoid membranes[J]. Journal of Biological Chemistry, 2008, 283(7):3972-3978.doi: 10.1074/jbc.M707410200.
|
[12] |
顾文辉. 积累类胡萝卜素的绿藻类囊体膜蛋白组学研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2014.
|
|
Gu W H. Proteomic study on thylakoid membrane proteins of green algae accumulating carotenoids[D]. Qingdao: Institute of Oceanology,Chinese Academy of Sciences, 2014.
|
[13] |
Pawlak K, Paul S, Liu C, Reus M, Yang C H, Holzwarth A R. On the PsbS-induced quenching in the plant major light-harvesting complex LHCⅡ studied in proteoliposomes[J]. Photosynthesis Research, 2020, 144(2):195-208.doi: 10.1007/s11120-020-00740-z.
|
[14] |
Yang Y N, Le T T L, Hwang J H, Zulfugarov I S, Kim E H, Kim H U, Jeon J S, Lee D H, Lee C H. High light acclimation mechanisms deficient in a PsbS-knockout Arabidopsis mutant[J]. International Journal of Molecular Sciences, 2022, 23(5):2695.doi: 10.3390/ijms23052695.
|
[15] |
Krah N M, Logan B A. Loss of psbS expression reduces vegetative growth,reproductive output,and light-limited,but not light-saturated,photosynthesis in Arabidopsis thaliana(Brassicaceae) grown in temperate light environments[J]. American Journal of Botany, 2010, 97(4):644-649.doi: 10.3732/ajb.0900163.
|
[16] |
De Souza A P, Burgess S J, Doran L, Hansen J, Manukyan L, Maryn N, Gotarkar D, Leonelli L, Niyogi K K, Long S P. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection[J]. Science, 2022, 377(6608):851-854.doi: 10.1126/science.adc9831.
pmid: 35981033
|
[17] |
Kereïche S, Kiss A Z, Kourˇil R, Boekema E J, Horton P. The PsbS protein controls the macro-organisation of photosystem Ⅱ complexes in the grana membranes of higher plant chloroplasts[J]. FEBS Letters, 2010, 584(4):759-764.doi: 10.1016/j.febslet.2009.12.031.
pmid: 20035752
|
[18] |
Hubbart S, Ajigboye O O, Horton P, Murchie E H. The photoprotective protein PsbS exerts control over CO 2 assimilation rate in fluctuating light in rice[J]. The Plant Journal, 2012, 71(3): 402-412. doi: 10.1111/j.1365-313x.2012.04995.x.
pmid: 22413771
|
[19] |
郑阵兵. 高光、光质和高盐胁迫下浒苔(Ulva prolifera)非光化学淬灭响应机制的比较分析[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2018.
|
|
Zheng Z B. Comparative analysis of nonphotochemical quenching in Ulva prolifera responding to high light,light quality and salinity stress[D]. Qingdao: Institute of Oceanology,Chinese Academy of Sciences, 2018.
|
[20] |
Ruban A V. Nonphotochemical chlorophyll fluorescence quenching:mechanism and effectiveness in protecting plants from photodamage[J]. Plant Physiology, 2016, 170(4):1903-1916.doi: 10.1104/pp.15.01935.
|
[21] |
Levin G, Schuster G. LHC-like proteins:the guardians of photosynthesis[J]. International Journal of Molecular Sciences, 2023, 24(3):2503.doi: 10.3390/ijms24032503.
|
[22] |
|
|
Wang G P. The responses of photosynthesis in tobacco with the BADH gene to drought and strong light stresses[D]. Taian: Shandong Agricultural University, 2006.
|
[23] |
|
|
Yuan Y. Analysis of photoprotective gene GhPsbS and study on the response of transgenic tobacco to light and temperature[D]. Shihezi: Shihezi University, 2022.
|
[24] |
张林, 王中, 李正风, 韦凤杰, 贾云祯, 张其东, 汪洪焦, 魏攀, 谢小东, 金立锋, 李锋, 祁超亚, 张小全, 王燃. 普通烟草DHQ-SDH基因家族分析[J]. 烟草科技, 2018, 51(8):1-8.doi: 10.16135/j.issn1002-0861.2018.0005.
|
|
Zhang L, Wang Z, Li Z F, Wei F J, Jia Y Z, Zhang Q D, Wang H J, Wei P, Xie X D, Jin L F, Li F, Qi C Y, Zhang X Q, Wang R. Analysis of DHQ-SDH gene family in Nicotiana tabacum[J]. Tobacco Science & Technology, 2018, 51(8):1-8.
|
[25] |
|
|
Xu H J, Lu L L, Tang Y H, Zhao D Q, Meng J S, Tao J. Cloning and expression characteristic analysis of PlSPL1 gene in Paeonia lactiflora pall[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(2):55-61.
|
[26] |
|
|
Jia Z Y. Function of tobacco transcription factor NtWRKY65 under drought and low nitrogen stress[D]. Zhengzhou: Henan Agricultural University, 2022.
|
[27] |
林法明, 李珅, 王珂, 高俊峰, 李光豪, 王代长, 杜长青, 赵全志. 水稻LRR-RLK基因 LP7的克隆及表达分析[J]. 华北农学报, 2019, 34(2):19-24.doi: 10.7668/hbnxb.201751355.
|
|
Lin F M, Li S, Wang K, Gao J F, Li G H, Wang D C, Du C Q, Zhao Q Z. Cloning and expression of LRR-RLK gene LP7 in rice[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(2):19-24.
|