[1] 刘国振, 朱立煌. 植物同源盒基因的克隆与功能研究[J]. 遗传,1998,20(3):42-47.
[2] 郝好, 崔永涛,钱前, 等. 水稻同源异形盒基因的研究进展[J]. 中国稻米, 2016(1):1-9.
[3] Gehring W J, Affolter M, Burglin T. Homeodomain proteins[J]. Annual Review of Biochemistry, 1994, 63(1):487-526.
[4] Vollbrecht E, Veit B, Sinha N, et al. The developmental gene Knotted-1 is a member of a maize homeobox gene family[J]. Nature, 1991, 350(6315):241-243.
[5] Nam J, Nei M. Evolutionary change of the numbers of homeobox genes in bilateral animals[J]. Molecular Biology and Evolution, 2005, 22(12):2386-2394.
[6] Shu Y, Tao Y, Wang S, et al. GmSBH1, a homeobox transcription factor gene, relates to growth and development and involves in response to high temperature and humidity stress in soybean[J]. Plant Cell Rep, 2015, 34(11):1927-1937.
[7] Nakamura M, Katsumata H, Abe M, et al. Characterization of the class IV homeodomain-leucine zipper gene family in Arabidopsis[J]. Plant Physiology, 2006, 141(4):1363-1375.
[8] Nakata M, Matsumoto N, Tsugeki R, et al. Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis[J]. Plant Cell, 2012, 24(2):519-535.
[9] Xu Y, Wang Y, Long Q, et al. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice[J]. Planta, 2014, 239(4):803-816.
[10] Wang H, Yin X, Li X, et al. Genome-wide identification, evolution and expression analysis of the grape (Vitis vinifera L.) zinc finger-homeodomain gene family[J]. Int J Mol Sci, 2014, 15(4):5730-5748.
[11] Zhang S, Haider I, Kohlen W, et al. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice[J]. Plant Mol Biol, 2012, 80(6):571-585.
[12] Turchi L, Baima S, Morelli G, et al. Interplay of HD-Zip Ⅱ and Ⅲ transcription factors in auxin-regulated plant development[J]. J Exp Bot, 2015, 66(16):5043-5053.
[13] Mukherjee K, Brocchieri L, Bürglin T R. A comprehensive classification and evolutionary analysis of plant homeobox genes[J]. Molecular Biology & Evolution, 2009, 26(12):2775-2794.
[14] Ariel F D, Manavella P A, Dezar C A, et al. The true story of the HD-Zip family[J]. Trends Plant Sci, 2007, 12(9):419-426.
[15] Wei H, Depamphilis C W, Ma H. Phylogenetic analysis of the plant-specific zinc finger-homeobox and mini zinc finger gene families[J]. Journal of Integrative Plant Biology, 2008, 50(8):1031-1045.
[16] Tan Q K, Irish V F. The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development[J]. Plant Physiol, 2006, 140(3):1095-1108.
[17] Bhattacharjee A, Ghangal R, Garg R, et al. Genome-wide analysis of homeobox gene family in legumes:identification, gene duplication and expression profiling[J]. PLoS One, 2015, 10(3):e0119198.
[18] 张大勇, 王长彪, 易金鑫, 等. 大豆ZF-HD蛋白家族的全基因组序列特征分析[J]. 江苏农业学报,2011, 27(3):675-677.
[19] Windhövel A, Hein I, Dabrowa R, et al. Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia[J]. Plant Molecular Biology, 2001, 45(2):201-214.
[20] Bueso E, Muñozbertomeu J, Campos F, et al. Arabidopsis thaliana HOMEOBOX25 uncovers a role for Gibberellins in seed longevity[J]. Plant Physiology, 2014, 164(2):999-1010.
[21] Figueiredo D D, Barros P M, Cordeiro A M, et al. Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B[J]. J Exp Bot, 2012, 63(10):3643-3656.
[22] Park H C, Kim M L, Lee S M, et al. Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4(GmCaM4) promoter[J]. Nucleic Acids Res, 2007, 35(11):3612-3623.
[23] 宁爱玲, 杜海平, 喻德跃, 等. GmAOC3基因转化载体构建及转化大豆的初步研究[J]. 大豆科学,2015,34(4):588-596.
[24] Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21):2947-2948.
[25] Tamura K, Stecher G, Peterson D, et al. MEGA6:Molecular Evolutionary Genetics Analysis version 6.0[J]. Mol Biol Evol, 2013, 30(12):2725-2729.
[26] Campo S, Segundo B S. Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation[J]. Plant Physiology, 2014, 165(2):688-704.
[27] Schmittgen T D, Livak K J. Analyzing Real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3(6):1101-1108.
[28] Humphrey, James, David E, et al. Protein phosphorylation:A major switch mechanism for metabolic regulation[J]. Trends in Endocrinology & Metabolism, 2015, 26(12):676-687.
[29] Harris J C, Hrmova M, Lopato S, et al. Modulation of plant growth by HD-Zip class Ⅰ and Ⅱ transcription factors in response to environmental stimuli[J]. New Phytol, 2011, 190(4):823-837. |