[1] |
Lyu F H, Wang D F, Zhao S Y, Lyu X Y, Sun W, Nielsen R, Li M H. Deep ancestral introgressions between ovine species shape sheep genomes via argali-mediated gene flow[J]. Molecular Biology and Evolution, 2024, 41(11):msae212.doi: 10.1093/molbev/msae212.
|
[2] |
|
|
Xing J. Comparative study on morphological structure of sheep tail and evolutionary relationship of genes related to tail fat deposition[D]. Lanzhou: Lanzhou University, 2020.
|
[3] |
|
|
Ren R. Study on fat deposition and biological characteristics of fat tissue in sheep with different tail types[D]. Lanzhou: Northwest University for Nationalities, 2019.
|
[4] |
|
|
Zhang Y, Song S Z, Niu R L, Wei Y S, Cai Y, Zhu C Y. Association analysis between genetic polymorphism of ADD1 gene and fat deposition in sheep tail(Ovis aries)[J]. Journal of Agricultural Biotechnology, 2024, 32(12):2764-2772.
|
[5] |
|
|
Wang J Q, Wang X Y, Zang C J, Liu W J, Peng H G, Wang Q, Yue X F, Yao G. Comparison of the serum lipids index and morphology of adipose tissue in different old Aletai sheep[J]. China Animal Husbandry & Veterinary Medicine, 2014, 41(12):167-171.
|
[6] |
Zhang W, Xu M S, Wang J J, Wang S Y, Wang X H, Yang J Q, Gao L, Gan S Q. Comparative transcriptome analysis of key genes and pathways activated in response to fat deposition in two sheep breeds with distinct tail phenotype[J]. Frontiers in Genetics, 2021, 12:639030.doi: 10.3389/fgene.2021.639030.
|
[7] |
|
|
Yu H, Li H B, Xie J L. An empirical analysis on the price fluctuation characteristics of meat products and the price impact effect of substitutes:a case of Xinjiang[J]. Tianjin Agricultural Sciences, 2020, 26(9):28-32.
|
[8] |
|
|
Yang M, Han J L, Liu J B, Yue Y J, Yang B H. Research progress on genetic and cellular biological mechanism of tail fat deposition in sheep[J]. Chinese Journal of Animal Science, 2018, 54(6):23-29.
|
[9] |
|
|
Kang D J. Screening of key genes of sheep fat deposition and regulation of ALDH1As in adipocyte differentiation[D]. Yangling: Northwest A&F University, 2018.
|
[10] |
Jia Y Y, Wu C Y, Kim J, Kim B, Lee S J. Astaxanthin reduces hepatic lipid accumulations in high-fat-fed C57BL/6J mice via activation of peroxisome proliferator-activated receptor(PPAR)alpha and inhibition of PPAR gamma and Akt[J]. The Journal of Nutritional Biochemistry, 2016, 28:9-18.doi: 10.1016/j.jnutbio.2015.09.015.
|
[11] |
|
|
Sun K X. Effects of PDGFD gene on tail fat deposition in Tan Sheep[D]. Yang Ling: Northwest Agriculture and Fores University, 2022.
|
[12] |
Wang J, Qi L, Huang S P, Zhou T, Guo Y S, Wang G G, Guo X J, Zhou Z M, Sha J H. Quantitative phosphoproteomics analysis reveals a key role of insulin growth factor 1 receptor(IGF1R)tyrosine kinase in human sperm capacitation[J]. Molecular & Cellular Proteomics, 2015, 14(4):1104-1112.doi: 10.1074/mcp.M114.045468.
|
[13] |
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi P P. A ceRNA hypothesis:the Rosetta stone of a hidden RNA language?[J]. Cell, 2011, 146(3):353-358.doi: 10.1016/j.cell.2011.07.014.
|
[14] |
Smillie C L, Sirey T, Ponting C P. Complexities of post-transcriptional regulation and the modeling of ceRNA crosstalk[J]. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53(3):231-245.doi: 10.1080/10409238.2018.1447542.
pmid: 29569941
|
[15] |
Su Q, Lyu X W. Revealing new landscape of cardiovascular disease through circular RNA-miRNA-mRNA axis[J]. Genomics, 2020, 112(2):1680-1685.doi: 10.1016/j.ygeno.2019.10.006.
pmid: 31626900
|
[16] |
|
|
Su X H. Identification of miRNAs and lncRNAs of tail fat differences in the second generation of Wild Ari Crosses[D]. Urumqi: Xinjiang Agricultural University, 2022.
|
[17] |
|
|
He X G. Analysis of metabolic mechanism of fat tissue in tail of Su Nite sheep at different growth stages based on total transcriptomics and metabonomics[D]. Hohhot: Inner Mongolia Agricultural University, 2023.
|
[18] |
Kim D, Langmead B, Salzberg S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4):357-360.doi: 10.1038/nmeth.3317.
|
[19] |
Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology, 2015, 33(3):290-295.doi: 10.1038/nbt.3122.
pmid: 25690850
|
[20] |
Kang Y J, Yang D C, Kong L, Hou M, Meng Y Q, Wei L P, Gao G. CPC2:a fast and accurate coding potential calculator based on sequence intrinsic features[J]. Nucleic Acids Research, 2017, 45(W1):W12-W16.doi: 10.1093/nar/gkx428.
|
[21] |
Sun L, Luo H T, Bu D C, Zhao G G, Yu K T, Zhang C H, Liu Y N, Chen R S, Zhao Y. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts[J]. Nucleic Acids Research, 2013, 41(17):e166.doi: 10.1093/nar/gkt646.
|
[22] |
Friedländer M R, Mackowiak S D, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades[J]. Nucleic Acids Research, 2012, 40(1):37-52.doi: 10.1093/nar/gkr688.
pmid: 21911355
|
[23] |
Robinson M D, McCarthy D J, Smyth G K. edgeR:a bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1):139-140.doi: 10.1093/bioinformatics/btp616.
pmid: 19910308
|
[24] |
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase:from microRNA sequences to function[J]. Nucleic Acids Research, 2019, 47(D1):D155-D162.doi: 10.1093/nar/gky1141.
|
[25] |
Wu Y G, Wei B, Liu H Z, Li T X, Rayner S. MiRPara:a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences[J]. BMC Bioinformatics, 2011, 12(1):107.doi: 10.1186/1471-2105-12-107.
|
[26] |
Enright A J, John B, Gaul U, Tuschl T, Sander C, Marks D S. microRNA targets in Drosophila[J]. Genome Biology, 2003, 5(1):R1.doi: 10.1186/gb-2003-5-1-r1.
|
[27] |
Lewis B P, Burge C B, Bartel D P. Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120(1):15-20.doi: 10.1016/j.cell.2004.12.035.
|
[28] |
Kruger J, Rehmsmeier M. RNAhybrid:microRNA target prediction easy,fast and flexible[J]. Nucleic Acids Research, 2006, 34:W451-W454.doi: 10.1093/nar/gkl243.
|
[29] |
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N D, Schwikowski B, Ideker T. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11):2498-2504.doi: 10.1101/gr.1239303.
pmid: 14597658
|
[30] |
Basu D, Goldberg I J. Regulation of lipoprotein lipase-mediated lipolysis of triglycerides[J]. Current Opinion in Lipidology, 2020, 31(3):154-160.doi: 10.1097/mol.0000000000000676.
pmid: 32332431
|
[31] |
Farhadi S, Hasanpur K, Ghias J S, Palangi V, Maggiolino A, Landi V. Comprehensive gene expression profiling analysis of adipose tissue in male individuals from fat-and thin-tailed sheep breeds[J]. Animals, 2023, 13(22):3475.doi: 10.3390/ani13223475.
|
[32] |
曹智, 许毛斗, 刘金璐, 刘林雨, 刘威, 徐欣磊, 包强, 张钰, 张扬, 徐琪, 陈国宏. 基于脂质组学技术分析畜禽脂质代谢差异的研究进展[J]. 中国畜牧杂志, 2023, 59(12):15-22.doi: 10.19556/j.0258-7033.20221119-03.
|
|
Cao Z, Xu M D, Liu J L, Liu L Y, Liu W, Xu X L, Bao Q, Zhang Y, Zhang Y, Xu Q, Chen G H. Research progress on analysis of lipid metabolism difference of livestock and poultry by lipomomic technique[J]. Chinese Journal of Animal Science, 2023, 59(12):15-22.
|
[33] |
Chen X, Sun C, Liu C, Wu J. lncRNA in hepatic glucose and lipid metabolism:a review[J]. Chinese Journal of Biotechnology, 2021, 37(1):40-52.doi: 10.13345/j.cjb.200211.
|
[34] |
Lin Z Y, Liu Z W, Wang X, Qiu C, Zheng S X. miR-21-3p plays a crucial role in metabolism alteration of renal tubular epithelial cells during sepsis associated acute kidney injury via AKT/CDK2-FOXO1 pathway[J]. BioMed Research International, 2019, 2019:2821731.doi: 10.1155/2019/2821731.
|
[35] |
张娟, 母童, 赵平, 陈佳萍, 冯小芳, 郭鹏, 武泽文, 刘丽元, 蒋秋斐, 顾亚玲. 静原鸡 ELOVL5基因遗传多样性研究[J]. 浙江农业学报, 2019, 31(2):200-206.doi: 10.3969/j.issn.1004-1524.2019.02.04.
|
|
Zhang J, Mu T, Zhao P, Chen J P, Feng X F, Guo P, Wu Z W, Liu L Y, Jiang Q F, Gu Y L. Polymorphism of ELOVL5 gene in Jingyuan chicken[J]. Acta Agriculturae Zhejiangensis, 2019, 31(2):200-206.
|
[36] |
Wang X Y, Yu H, Gao R, Liu M, Xie W L. A comprehensive review of the family of very-long-chain fatty acid elongases:structure,function,and implications in physiology and pathology[J]. European Journal of Medical Research, 2023, 28(1):532.doi: 10.1186/s40001-023-01523-7.
|
[37] |
Li X H, Jiang P, Yu H B, Yang Y W, Xia L X, Yang R J, Fang X B, Zhao Z H. miR-21-3p Targets Elovl5 and regulates triglyceride production in mammary epithelial cells of cow[J]. DNA and Cell Biology, 2019, 38(4):352-357.doi: 10.1089/dna.2018.4409.
|
[38] |
Kaltezioti V, Foskolou I P, Lavigne M D, Ninou E, Tsampoula M, Fousteri M, Margarity M, Politis P K. Prox1 inhibits neurite outgrowth during central nervous system development[J]. Cellular and Molecular Life Sciences, 2021, 78(7):3443-3465.doi: 10.1007/s00018-020-03709-2.
pmid: 33247761
|
[39] |
Alfaro A J, Dittner C, Becker J, Loft A, Mhamane A, Maida A, Georgiadi A, Tsokanos F F, Klepac K, Molocea C E, El-Merahbi R, Motzler K, Geppert J, Karikari R A, Szendrödi J, Feuchtinger A, Hofmann S, Karaca S, Urlaub H, Berriel Diaz M, Melchior F, Herzig S. Fasting-sensitive SUMO-switch on Prox1 controls hepatic cholesterol metabolism[J]. EMBO Reports, 2023, 24(10):e55981.doi: 10.15252/embr.202255981.
|
[40] |
Armour S M, Remsberg J R, Damle M, Sidoli S, Ho W Y, Li Z H, Garcia B A, Lazar M A. An HDAC3-PROX1 corepressor module acts on HNF4α to control hepatic triglycerides[J]. Nature Communications, 2017, 8:549.doi: 10.1038/s41467-017-00772-5.
pmid: 28916805
|
[41] |
Jamwal S, Blackburn J K, Elsworth J D. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders[J]. Pharmacology & Therapeutics, 2021, 219:107705.doi: 10.1016/j.pharmthera.2020.107705.
|
[42] |
He Q Y, Yao W W, Luo J, Wu J, Zhang F H, Li C, Gao L, Zhang Y. Knockdown of PROX1 promotes milk fatty acid synthesis by targeting PPARGC1A in dairy goat mammary gland[J]. International Journal of Biological Macromolecules, 2024, 266:131043.doi: 10.1016/j.ijbiomac.2024.131043.
|
[43] |
Wen Y, Chen Y Q, Konrad R J. The regulation of triacylglycerol metabolism and lipoprotein lipase activity[J]. Advanced Biology, 2022, 6(10):2200093.doi: 10.1002/adbi.202200093.
|
[44] |
宋淑珍, 朱才业, 刘立山, 宫旭胤, 雒瑞瑞. 断尾对兰州大尾羊脂肪细胞结构和脂肪代谢相关基因表达的影响[J]. 草业学报, 2024, 33(7):94-104.doi: 10.11686/cyxb2023417.
|
|
Song S Z, Zhu C Y, Liu L S, Gong X Y, Luo R R. The effect of tail-docking on adipocyte structure and lipid metabolism-related gene expression in Lanzhou fat-tailed sheep[J]. Acta Prataculturae Sinica, 2024, 33(7):94-104.
|
[45] |
Wang H, Zhong J C, Zhang C F, Chai Z X, Cao H W, Wang J K, Zhu J J, Wang J B, Ji Q M. The whole-transcriptome landscape of muscle and adipose tissues reveals the ceRNA regulation network related to intramuscular fat deposition in yak[J]. BMC Genomics, 2020, 21(1):347.doi: 10.1186/s12864-020-6757-z.
pmid: 32381004
|
[46] |
|
|
Li Y, Yan Y, Ji G J, Zhang W H, Zhao L, Chen B, Chen H. Effect of LRP1B on the proliferation,migration,invasion and immune microenvironment of Lewis cells[J]. Journal of Xuzhou Medical University, 2024, 44(2):100-105.
|
[47] |
Li M M, Hu J T, Jin R M, Cheng H X, Chen H P, Li L M, Guo K. Effects of LRP1B regulated by HSF1 on lipid metabolism in hepatocellular carcinoma[J]. Journal of Hepatocellular Carcinoma, 2020, 7:361-376.doi: 10.2147/jhc.s279123.
pmid: 33324588
|
[48] |
Sangineto M, Villani R, Cavallone F, Romano A, Loizzi D, Serviddio G. Lipid metabolism in development and progression of hepatocellular carcinoma[J]. Cancers, 2020, 12(6):1419.doi: 10.3390/cancers12061419.
|