[1] |
Sattari S Z, Bouwman A F, Giller K E, Van Ittersum M K.Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16):6348-6353.doi: 10.1073/pnas.1113675109.
doi: 10.1073/pnas.1113675109
pmid: 22431593
|
[2] |
doi: 10.11924/j.issn.1000-6850.casb15080141
|
|
Gong J, Ma Y H, Hu H X, Wu L, Fu B Y, Yin H X, Tian Y. Research advances on environmental indicator of soil phosphorus in farmland[J]. Chinese Agricultural Science Bulletin, 2016, 32(2):112-117.
doi: 10.11924/j.issn.1000-6850.casb15080141
|
[3] |
Hou E Q, Luo Y Q, Kuang Y W, Chen C R, Lu X K, Jiang L F, Luo X Z, Wen D Z. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems[J]. Nature Communications, 2020, 11(1):637.doi: 10.1038/s41467-020-14492-w.
doi: 10.1038/s41467-020-14492-w
pmid: 32005808
|
[4] |
Bai Y F, Chen S Y, Shi S R, Qi M J, Liu X H, Wang H, Wang Y X, Jiang C Q. Effects of different management approaches on the stoichiometric characteristics of soil C,N,and P in a mature Chinese fir plantation[J]. Science of the Total Environment, 2020, 723:137868.doi: 10.1016/j.scitotenv.2020.137868.
doi: 10.1016/j.scitotenv.2020.137868
URL
|
[5] |
Chen S, Yan Z J, Zhang S, Fan B Q, Cade-Menun B J, Chen Q. Nitrogen application favors soil organic phosphorus accumulation in calcareous vegetable fields[J]. Biology and Fertility of Soils, 2019, 55(5):481-496.doi: 10.1007/s00374-019-01364-9.
doi: 10.1007/s00374-019-01364-9
|
[6] |
Chen X D, Jiang N, Condron L M, Dunfield K E, Chen Z H, Wang J K, Chen L J. Impact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field,Northeast China[J]. Science of the Total Environment, 2019, 669:1011-1018.doi: 10.1016/j.scitotenv.2019.03.172.
doi: 10.1016/j.scitotenv.2019.03.172
URL
|
[7] |
Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil:is there a "Redfield ratio" for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3):235-252.doi: 10.1007/s10533-007-9132-0.
doi: 10.1007/s10533-007-9132-0
URL
|
[8] |
Xu X F, Thornton P E, Post W M. A global analysis of soil microbial biomass carbon,nitrogen and phosphorus in terrestrial ecosystems[J]. Global Ecology and Biogeography, 2013, 22(6):737-749.doi: 10.1111/geb.12029.
doi: 10.1111/geb.12029
URL
|
[9] |
Tian H Q, Chen G S, Zhang C, Melillo J M, Hall C A S. Pattern and variation of C∶N∶P ratios in China's soils:a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1/2/3):139-151.doi: 10.1007/s10533-009-9382-0.
doi: 10.1007/s10533-009-9382-0
URL
|
[10] |
万欣. 温室土壤生态化学计量学特征及与番茄青枯病的关系[D]. 北京: 中国科学院大学, 2013.
|
|
Wan X. Ecological chemometrics characteristics of greenhouse soil and its relationship with tomato bacterial wilt[D]. Beijing: University of Chinese Academy of Sciences, 2013.
|
[11] |
Ding L J, Wu J S, Xiao H A, Zhou P, Syers J K. Mobilisation of inorganic phosphorus induced by rice straw in aggregates of a highly weathered upland soil[J]. Journal of the Scince of Food and Agriculture, 2012, 92(5):1073-1079.doi: 10.1002/jsfa.4717.
doi: 10.1002/jsfa.4717
|
[12] |
Spohn M, Kuzyakov Y. Phosphorus mineralization can be driven by microbial need for carbon[J]. Soil Biology and Biochemistry, 2013, 61:69-75.doi: 10.1016/j.soilbio.2013.02.013.
doi: 10.1016/j.soilbio.2013.02.013
URL
|
[13] |
Cayuela M L, Sinicco T, Mondini C. Mineralization dynamics and biochemical properties during initial decomposition of plant and animal residues in soil[J]. Applied Soil Ecology, 2009, 41(1):118-127.doi: 10.1016/j.apsoil.2008.10.001.
doi: 10.1016/j.apsoil.2008.10.001
URL
|
[14] |
Tomar U, Baishya R. Seasonality and moisture regime control soil respiration,enzyme activities,and soil microbial biomass carbon in a semi-arid forest of Delhi,India[J]. Ecological Processes, 2020(1):579-591.doi: 10.1186/s13717-020-00252-7.
doi: 10.1186/s13717-020-00252-7
|
[15] |
Blagodatskaya E, Blagodatsky S, Dorodnikov M, Kuzyakov Y. Elevated atmospheric CO 2 increases microbial growth rates in soil:results of three CO 2 enrichment experiments[J]. Global Change Biology, 2010, 16(2):836-848.doi: 10.1111/j.1365-2486.2009.02006.x.
doi: 10.1111/j.1365-2486.2009.02006.x
URL
|
[16] |
doi: 10.3969/j:issn.2095-1191.2013.2.253
|
|
Zeng Y, Zhou L Q, Huang J S, Xie R L, Huang M F, Tan H W. Enzymatic activity of mulberry garden soil using different nitrogen fertilizer treatments[J]. Journal of Southern Agriculture, 2013, 44(2):253-256.
|
[17] |
于群英. 土壤磷酸酶活性及其影响因素研究[J]. 安徽技术师范学院学报, 2001(4):5-8.
|
|
Yu Q Y. Study on soil phosphatase activity and their influenced factors[J]. Journal of Anhui Agrotechnical, 2001(4):5-8.
|
[18] |
Chen R R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X G, Blagodatskaya E, Kuzyakov Y. Soil C and N availability determine the priming effect:Microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 2014, 20(7):2356-2367.doi: 10.1111/gcb.12475.
doi: 10.1111/gcb.12475
URL
|
[19] |
Saunders W M H, Williams E G. Observations on the determination of total organic phosphorus in soils[J]. Journal of Soil Science, 1955, 6(2):254-267.doi: 10.1111/j.1365-2389.1955.tb00849.x.
doi: 10.1111/j.1365-2389.1955.tb00849.x
URL
|
[20] |
Olsen S R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate[M]. Washington D C: U.S. Dept.of Agriculture,1954.
|
[21] |
Hoppe H G, Ullrich S. Profiles of ectoenzymes in the Indian Ocean:phenomena of phosphatase activity in the mesopelagic zone[J]. Aquatic Microbial Ecology, 1999, 19(2):139-148.doi: 10.3354/ame019139.
doi: 10.3354/ame019139
URL
|
[22] |
Li Q R, Tian Y Q, Zhang X Y, Xu X L, Wang H M, Kuzyakov Y. Labile carbon and nitrogen additions affect soil organic matter decomposition more strongly than temperature[J]. Applied Soil Ecology, 2017, 114:152-160.doi: 10.1016/j.apsoil.2017.01.009.
doi: 10.1016/j.apsoil.2017.01.009
URL
|
[23] |
Hicks L C, Meir P, Nottingham A T, Reay D S, Stott A W, Salinas N, Whitaker J. Carbon and nitrogen inputs differentially affect priming of soil organic matter in tropical lowland and montane soils[J]. Soil Biology and Biochemistry, 2019, 129:212-222.doi: 10.1016/j.soilbio.2018.10.015.
doi: 10.1016/j.soilbio.2018.10.015
URL
|
[24] |
Liu J, Yang J J, Cade-Menun B J, Hu Y F, Li J M, Peng C, Ma Y B. Molecular speciation and transformation of soil legacy phosphorus with and without long-term phosphorus fertilization:Insights from bulk and microprobe spectroscopy[J]. Scientific Reports, 2017, 7(1):15354.doi: 10.1038/s41598-017-13498-7.
doi: 10.1038/s41598-017-13498-7
|
[25] |
Zhu Z K, Ge T D, Luo Y, Liu S L, Xu X L, Tong C L, Shibistova O, Guggenberger G, Wu J S. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil[J]. Soil Biology and Biochemistry, 2018, 121:67-76.doi: 10.1016/j.soilbio.2018.03.003.
doi: 10.1016/j.soilbio.2018.03.003
URL
|
[26] |
Kuzyakov Y, Friedel J K, Stahr K. Review of mechanisms and quantification of priming effects[J]. Soil Biology and Biochemistry, 2000, 32(11/12):1485-1498.doi: 10.1016/S0038-0717(00)00084-5.
doi: 10.1016/S0038-0717(00)00084-5
URL
|
[27] |
Kuzyakov Y. Priming effects:Interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 2010, 42(9):1363-1371.doi: 10.1016/j.soilbio.2010.04.003.
doi: 10.1016/j.soilbio.2010.04.003
URL
|
[28] |
Blagodatskaya E, Kuzyakov Y. Active microorganisms in soil:Critical review of estimation criteria and approaches[J]. Soil Biology and Biochemistry, 2013, 67:192-211.doi: 10.1016/j.soilbio.2013.08.024.
doi: 10.1016/j.soilbio.2013.08.024
URL
|
[29] |
Sun Q, Qiu H S, Hu Y J, Wei X M, Chen X B, Ge T D, Wu J S, Su Y R. Cellulose and lignin regulate partitioning of soil phosphorus fractions and alkaline phosphomonoesterase encoding bacterial community in phosphorus-deficient soils[J]. Biology and Fertility of Soils, 2019, 55(1):31-42.doi: 10.1007/s00374-018-1325-2.
doi: 10.1007/s00374-018-1325-2
|
[30] |
Xu Z, Qu M S, Liu S L, Duan Y S, Wang X, Brown L K, George T S, Zhang L, Feng G. Carbon addition reduces labile soil phosphorus by increasing microbial biomass phosphorus in intensive agricultural systems[J]. Soil Use and Management, 2020, 36(3):536-546.doi: 10.1111/sum.12585.
doi: 10.1111/sum.12585
URL
|
[31] |
Qiao N, Xu X L, Hu Y H, Blagodatskaya E, Liu Y W, Schaefer D, Kuzyakov Y. Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum[J]. Scientific Reports, 2016, 6:19865.doi: 10.1038/srep19865.
doi: 10.1038/srep19865
pmid: 26806914
|
[32] |
doi: 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2
URL
|
[33] |
doi: 10.1023/B:PLSO.0000047728.61591.fd
URL
|
[34] |
Zang H D, Wang J Y, Kuzyakov Y. N fertilization decreases soil organic matter decomposition in the rhizosphere[J]. Applied Soil Ecology, 2016, 108:47-53.doi: 10.1016/j.apsoil.2016.07.021.
doi: 10.1016/j.apsoil.2016.07.021
URL
|
[35] |
赵普生. 添加外源碳影响土壤磷的有效性作用研究[D]. 重庆: 西南大学, 2019.
|
|
Zhao P S. Study on the effectiveness of adding exogenous carbon to soil phosphorus[D]. Chongqing: Southwest University, 2019.
|
[36] |
周礼恺, 张志明, 曹承绵. 土壤酶活性的总体在评价土壤肥力水平中的作用[J]. 土壤学报, 1983(4):413-418.
|
|
Zhou L K, Zhang Z M, Cao C J. The role of the totality of soil enzyme activities in the evaluation of the level of soil fertility[J]. Acta Pedologica Sinica, 1983(4):413-418.
|
[37] |
Wang Y J, Huang Q Q, Gao H, Zhang R Q, Yang L, Guo Y R, Li H K, Awasthi M K, Li G C. Long-term cover crops improved soil phosphorus availability in a rain-fed apple orchard[J]. Chemosphere, 2021, 275:130093.doi: 10.1016/j.chemosphere.2021.130093.
doi: 10.1016/j.chemosphere.2021.130093
URL
|
[38] |
doi: 10.16035/j.issn.1001-7283.2015.02.016
|
|
Zhan H Q, Yan S S, Wang J R, Ma C M, Gong Z P, Dong S K, Zhang Q W. Effects of rice straw returning on activities of soil phosphatase and available P values in soil[J]. Crops, 2015(2):78-83.
|
[39] |
Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A. Stoichiometric imbalances between terrestrial decomposer communities and their resources:Mechanisms and implications of microbial adaptations to their resources[J]. Frontiers in Microbiology, 2014, 5:22.doi: 10.3389/fmicb.2014.00022.
doi: 10.3389/fmicb.2014.00022
pmid: 24550895
|
[40] |
Bünemann E, Oberson A, Frossard E. Phosphorus in action biological processes in soil phosphorus cycling[M]. Berlin: Springer Science & Business Media, 2011.doi: 10.1007/978-3-642-15271-9
doi: 10.1007/978-3-642-15271-9
|
[41] |
Dorodnikov M, Blagodatskaya E, Blagodatsky S, Marhan S, Fangmeier A, Kuzyakov Y. Stimulation of microbial extracellular enzyme activities by elevated CO 2 depends on soil aggregate size[J]. Global Change Biology, 2009, 15(6):1603-1614.doi: 10.1111/j.1365-2486.2009.01844.x.
doi: 10.1111/j.1365-2486.2009.01844.x
URL
|