[20] |
Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M S, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1:Rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis[J]. DNA Research, 2002, 9(1):11-17.doi: 10.1093/dnares/9.1.11.
doi: 10.1093/dnares/9.1.11
pmid: 11939564
|
[21] |
Brown P J, Rooney W L, Franks C, Kresovich S. Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes[J]. Genetics, 2008, 180(1):629-637.doi: 10.1534/genetics.108.092239.
doi: 10.1534/genetics.108.092239
pmid: 18757942
|
[22] |
Hilley J, Truong S, Olson S, Morishige D, Mullet J. Identification of Dw1,a regulator of sorghum stem internode length[J]. PLoS One, 2016, 11(3):e0151271.doi: 10.1371/journal.pone.0151271.
doi: 10.1371/journal.pone.0151271
URL
|
[23] |
Yamaguchi M, Fujimoto H, Hirano K, Araki-Nakamura S, Ohmae-Shinohara K, Fujii A, Tsunashima M, Song X J, Ito Y, Nagae R, Wu J Z, Mizuno H, Yonemaru J I, Matsumoto T, Kitano H, Matsuoka M, Kasuga S, Sazuka T. Sorghum Dw1,an agronomically important gene for lodging resistance,encodes a novel protein involved in cell proliferation[J]. Scientific Reports, 2016, 6:28366.doi: 10.1038/srep28366.
doi: 10.1038/srep28366
pmid: 27329702
|
[24] |
Hilley J L, Weers B D, Truong S K, McCormick R F, Mattison A J, McKinley B A, Morishige D T, Mullet J E. Sorghum Dw2 encodes a protein kinase regulator of stem internode length[J]. Scientific Reports, 2017, 7(1):4616.doi: 10.1038/s41598-017-04609-5.
doi: 10.1038/s41598-017-04609-5
pmid: 28676627
|
[1] |
doi: 10.3864/j.issn.0578-1752.2021.03.002
|
|
Li S G, Liu M, Liu F, Zou J Q, Lu X C, Diao X M. Current status and future prospective of sorghum production and seed industry in China[J]. Scientia Agricultura Sinica, 2021, 54(3):471-482.
doi: 10.3864/j.issn.0578-1752.2021.03.002
|
[2] |
doi: 10.11923/j.issn.2095-4050.cjas18030019
|
|
Zhang F Y, Ping J A, Zhao W J. Genetic quality improvement of brewing sorghum in China:Research progress[J]. Journal of Agriculture, 2019, 9(3):21-25.
|
[3] |
doi: 10.13842/j.cnki.issn1671-8151.201911069
|
|
Zou J Q, Wang Y Q, Ke F L. Development status and prospect of sorghum industry in China[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2020, 40(3):2-8.
|
[4] |
doi: 10.3864/j.issn.0578-1752.2018.02.005
|
|
Li S B, Tang C C, Chen F, Xie G H. Temporal and spatial changes in yield and quality with grain sorghum variety improvement in China[J]. Scientia Agricultura Sinica, 2018, 51(2):246-256.
doi: 10.3864/j.issn.0578-1752.2018.02.005
|
[5] |
doi: 10.3864/j.issn.0578-1752.2020.14.004
|
|
Niu H, Ping J A, Wang Y B, Zhang F Y, Lü X, Li H M, Chu J Q. Molecular aided breeding system of photosensitive forage sorghum based on SSR[J]. Scientia Agricultura Sinica, 2020, 53(14):2795-2803.
doi: 10.3864/j.issn.0578-1752.2020.14.004
|
[6] |
高玉坤, 杨溥原, 项晓冬, 魏世林, 任根增, 殷丛培, 梁红凯, 崔江慧, 常金华. 不同耐盐高粱品种全生育期对盐胁迫的响应[J]. 华北农学报, 2020, 35(6):113-121.doi: 10.7668/hbnxb.20191411.
doi: 10.7668/hbnxb.20191411
|
|
Gao Y K, Yang P Y, Xiang X D, Wei S L, Ren G Z, Yin C P, Liang H K, Cui J H, Chang J H. Response of different salt tolerant sorghum varieties to salt stress in the whole growth period[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(6):113-121.
doi: 10.7668/hbnxb.20191411
|
[7] |
doi: 10.2134/agronj1954.00021962004600050007x
URL
|
[8] |
Lin Y R, Schertz K F, Paterson A H. Comparative analysis of QTLs affecting plant height and maturity across the poaceae,in reference to an interspecific sorghum population[J]. Genetics, 1995, 141(1):391-411.doi: 10.1093/genetics/141.1.391.
doi: 10.1093/genetics/141.1.391
pmid: 8536986
|
[25] |
doi: 10.3724/SP.J.1006.2019.84111
|
|
Wang R, Ling L, Zhan P J, Yu J Z, Chu J Q, Ping J A, Zhang F Y. Mapping of genes confessing same height of tiller and main stem in sorghum[J]. Acta Agronomica Sinica, 2019, 45(6):829-838.
doi: 10.3724/SP.J.1006.2019.84111
|
[26] |
Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, Vandesompele J. A novel and universal method for microRNA RT-qPCR data normalization[J]. Genome Biology, 2009, 10(6):R64.doi: 10.1186/gb-2009-10-6-r64.
doi: 10.1186/gb-2009-10-6-r64
URL
|
[27] |
程欣然, 蔡欣月, 岩温香, 牛江帅, 吴荣, 牛庭莉, 穆云静, 戴凌燕. 异源过表达 Atvip1基因增强转基因高粱对盐碱胁迫的抗性[J]. 华北农学报, 2021, 36(4):1-9.doi: 10.7668/hbnxb.20191908.
doi: 10.7668/hbnxb.20191908
|
|
Cheng X R, Cai X Y, Yan W X, Niu J S, Wu R, Niu T L, Mu Y J, Dai L Y. Heterologous overexpression of Atvip1 gene enhances the resistance of transgenic sorghum to saline-alkali stress[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(4):1-9.
|
[28] |
Johnson G. The α/β hydrolase fold proteins of Mycobacterium tuberculosis,with reference to their contribution to virulence[J]. Current Protein & Peptide Science, 2017, 18(3):190-210.doi: 10.2174/1389203717666160729093515.
doi: 10.2174/1389203717666160729093515
|
[9] |
Pereira M G, Lee M. Identification of genomic regions affecting plant height in sorghum and maize[J]. Theoretical and Applied Genetics, 1995, 90(3/4):380-388.doi: 10.1007/BF00221980.
doi: 10.1007/BF00221980
URL
|
[10] |
Rami J F, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P. Quantitative trait loci for grain quality,productivity,morphological and agronomical traits in sorghum( Sorghum bicolor L. Moench)[J]. Theoretical and Applied Genetics, 1998, 97(4):605-616.doi: 10.1007/s001220050936.
doi: 10.1007/s001220050936
URL
|
[11] |
Klein R R, Rodriguez-Herrera R, Schlueter J A, Klein P E, Yu Z H, Rooney W L. Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum[J]. Theoretical and Applied Genetics, 2001, 102(2/3):307-319.doi: 10.1007/S001220051647.
doi: 10.1007/S001220051647
URL
|
[12] |
Feltus F A, Hart G E, Schertz K F, Casa A M, Kresovich S, Abraham S, Klein P E, Brown P J, Paterson A H. Alignment of genetic maps and QTLs between inter-and intra-specific sorghum populations[J]. Theoretical and Applied Genetics, 2006, 112(7):1295-1305.doi: 10.1007/s00122-006-0232-3.
doi: 10.1007/s00122-006-0232-3
pmid: 16491426
|
[13] |
Brown P J, Klein P E, Bortiri E, Acharya C B, Rooney W L, Kresovich S. Inheritance of inflorescence architecture in sorghum[J]. Theoretical and Applied Genetics, 2006, 113(5):931-942.doi: 10.1007/s00122-006-0352-9.
doi: 10.1007/s00122-006-0352-9
pmid: 16847662
|
[14] |
Srinivas G, Satish K, Madhusudhana R, Reddy R N, Mohan S M, Seetharama N. Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum[J]. Theoretical and Applied Genetics, 2009, 118(8):1439-1454.doi: 10.1007/s00122-009-0993-6.
doi: 10.1007/s00122-009-0993-6
pmid: 19274449
|
[29] |
Bononi G, Tuccinardi T, Rizzolio F, Granchi C. α/β-hydrolase domain(ABHD)inhibitors as new potential therapeutic options against lipid-related diseases[J]. Journal of Medicinal Chemistry, 2021, 64(14):9759-9785.doi: 10.1021/acs.jmedchem.1c00624.
doi: 10.1021/acs.jmedchem.1c00624
URL
|
[30] |
doi: 10.13432/j.cnki.jgsau.2019.01.001
|
|
Chen N L. Research advances on source-sink interaction of the crops[J]. Journal of Gansu Agricultural University, 2019, 54(1):1-10.
|
[31] |
Kim H K, Luquet D, van Oosterom E, Dingkuhn M, Hammer G. Regulation of tillering in sorghum:Genotypic effects[J]. Annals of Botany, 2010, 106(1):69-78.doi: 10.1093/aob/mcq080.
doi: 10.1093/aob/mcq080
URL
|
[32] |
Chen J, Zhang L M, Zhu M J, Han L J, Lü Y, Liu Y S, Li P, Jing H C, Cai H W. Non-dormant Axillary Bud 1 regulates axillary bud outgrowth in sorghum[J]. Journal of Integrative Plant Biology, 2018, 60(10):938-955 doi:10.1111/jipb.12665.
doi: 10.1111/jipb.v60.10
URL
|
[33] |
Govindarajulu R, Hostetler A N, Xiao Y G, Chaluvadi S R, Mauro-Herrera M, Siddoway M L, Whipple C, Bennetzen J L, Devos K M, Doust A N, Hawkins J S. Integration of high-density genetic mapping with transcriptome analysis uncovers numerous agronomic QTL and reveals candidate genes for the control of tillering in sorghum[J]. Genes|Genomes|Genetics, 2021, 11(2):jkab024.doi: 10.1093/g3journal/jkab024.
doi: 10.1093/g3journal/jkab024
|
[34] |
Li X, Li X R, Fridman E, Tesso T T, Yu J M. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(38):11823-11828.doi: 10.1073/pnas.1509229112.
doi: 10.1073/pnas.1509229112
pmid: 26351684
|
[15] |
Shiringani A L, Frisch M, Friedt W. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L.Moench[J]. Theoretical and Applied Genetics, 2010, 121(2):323-336.doi: 10.1007/s00122-010-1312-y.
doi: 10.1007/s00122-010-1312-y
pmid: 20229249
|
[16] |
Upadhyaya H D, Wang Y H, Gowda C L, Sharma S. Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection[J]. Theoretical and Applied Genetics, 2013, 126(8):2003-2015.doi: 10.1007/s00122-013-2113-x.
doi: 10.1007/s00122-013-2113-x
pmid: 23649651
|
[17] |
Harris-Shultz K R, Davis R F, Knoll J E, Anderson W, Wang H L. Inheritance and identification of a major quantitative trait locus(QTL)that confers resistance to Meloidogyne incognita and a novel QTL for plant height in sweet Sorghum[J]. Phytopathology, 2015, 105(12):1522-1528.doi: 10.1094/PHYTO-06-15-0136-R.
doi: 10.1094/PHYTO-06-15-0136-R
pmid: 26574655
|
[18] |
Multani D S, Briggs S P, Chamberlin M A, Blakeslee J J, Murphy A S, Johal G S. Loss of an MDR transporter in compact stalks of maize Br2 and sorghum dw3 mutants[J]. Science, 2003, 302(5642):81-84.doi: 10.1126/science.1086072.
doi: 10.1126/science.1086072
pmid: 14526073
|
[19] |
Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. 'Green revolution' genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400(6741):256-261.doi: 10.1038/22307.
doi: 10.1038/22307
|