[1] |
Aizawa H, Sekine Y, Takemura R, Zhang Z, Nangaku M, Hirokawa N. Kinesin family in murine central nervous system[J]. The Journal of Cell Biology, 1992, 119(5): 1287-1296.doi: 10.1083/jcb.119.5.1287.
doi: 10.1083/jcb.119.5.1287
URL
|
[2] |
Debernardi S, Fontanella E, de Gregorio L, Pierotti M A, Delia D. Identification of a novel human kinesin-related gene( HK2)by the cDNA differential display technique[J]. Genomics, 1997, 42(1): 67-73.doi: 10.1006/geno.1997.4720.
doi: 10.1006/geno.1997.4720
pmid: 9177777
|
[3] |
Lawrence C J, Dawe R K, Christie K R, et al. A standardized kinesin nomenclature[J]. The Journal of Cell Biology, 2004, 167(1): 19-22.doi: 10.1083/jcb.200408113.
doi: 10.1083/jcb.200408113
URL
|
[4] |
Ems-McClung S C, Walczak C E. Kinesin-13s in mitosis: Key players in the spatial and temporal organization of spindle microtubules[J]. Seminars in Cell & Developmental Biology, 2010, 21(3): 276-282.doi: 10.1016/j.semcdb.2010.01.016.
doi: 10.1016/j.semcdb.2010.01.016
|
[5] |
Sun M J, Jia M K, Ren H, Yang B Y, Chi W F, Xin G W, Jiang Q, Zhang C M. NuMA regulates mitotic spindle assembly,structural dynamics and function via phase separation[J]. Nature Communications, 2021, 12: 7157.doi: 10.1038/s41467-021-27528-6.
doi: 10.1038/s41467-021-27528-6
URL
|
[6] |
Pavani M, Bonaiuti P, Chiroli E, Gross F, Natali F, Macaluso F, Póti Á, Pasqualato S, Farkas Z, Pompei S, Cosentino Lagomarsino M, Rancati G, Szüts D, Ciliberto A,. Epistasis,aneuploidy,and functional mutations underlie evolution of resistance to induced microtubule depolymerization[J]. The EMBO Journal, 2021, 40(22): e108225.doi: 10.15252/embj.2021108225.
doi: 10.15252/embj.2021108225
|
[7] |
Huang S P, Dougherty L L, Avasthi P. Separable roles for RanGTP in nuclear and ciliary trafficking of a kinesin-2 subunit[J]. Journal of Biological Chemistry, 2021, 296: 100117.doi: 10.1074/jbc.RA119.010936.
doi: 10.1074/jbc.RA119.010936
URL
|
[8] |
Sheng N, Xu Y Z, Xi Q H, Jiang H Y, Wang C Y, Zhang Y, Ye Q. Overexpression of KIF2A is suppressed by miR-206 and associated with poor prognosis in ovarian cancer[J]. Cellular Physiology and Biochemistry, 2018, 50(3): 810-822.doi: 10.1159/000494467.
doi: 10.1159/000494467
pmid: 30352438
|
[9] |
Wang D, Zhu H J, Ye Q, Wang C Y, Xu Y Z. Prognostic value of KIF2A and HER2-neu overexpression in patients with epithelial ovarian cancer[J]. Medicine, 2016, 95(8): e2803.doi: 10.1097/MD.0000000000002803.
doi: 10.1097/MD.0000000000002803
URL
|
[10] |
Yang H D, Zhang F X, Huang C J, Liao J, Han Y, Hao P L, Chu Y J, Lu X A, Li W S, Yu H T, Kang J. Mps1 regulates spindle morphology through MCRS1 to promote chromosome alignment[J]. Molecular Biology of the Cell, 2019, 30(9): 1060-1068.doi: 10.1091/mbc.E18-09-0546.
doi: 10.1091/mbc.E18-09-0546
pmid: 30785839
|
[11] |
Bufe A, García del Arco A, Hennecke M, de Jaime-Soguero A, Ostermaier M, Lin Y C, Ciprianidis A, Hattemer J, Engel U, Beli P, Bastians H, Acebrón S P. Wnt signaling recruits KIF2A to the spindle to ensure chromosome congression and alignment during mitosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(34): e2108145118.doi: 10.1073/pnas.2108145118.
doi: 10.1073/pnas.2108145118
|
[12] |
Chen Y, Pan C, Lu Y J, Miao Y L, Xiong B. HDAC8 drives spindle organization during meiotic maturation of porcine oocytes[J]. Cell Proliferation, 2021, 54(10): e13119.doi: 10.1111/cpr.13119.
doi: 10.1111/cpr.13119
|
[13] |
Eagleson G, Pfister K, Knowlton A L, Skoglund P, Keller R, Stukenberg P T. Kif2a depletion generates chromosome segregation and pole coalescence defects in animal caps and inhibits gastrulation of the Xenopus embryo[J]. Molecular Biology of the Cell, 2015, 26(5): 924-937.doi: 10.1091/mbc.E13-12-0721.
doi: 10.1091/mbc.E13-12-0721
pmid: 25568341
|
[14] |
张奥. KIF2A在人卵母细胞体外成熟中的表达及功能研究[D]. 广州: 南方医科大学, 2018.
|
|
Zhang A. The location and function of KIF2A in vitro maturation of human oocyte[D]. Guangzhou: Southern Medical University, 2018.
|
[15] |
Xu Z Y, Ma X S, Qi S T, Wang Z B, Guo L, Schatten H, Sun Q Y, Sun Y P. Cep55 regulates spindle organization and cell cycle progression in meiotic oocyte[J]. Scientific Reports, 2015, 5: 16978.doi: 10.1038/srep16978.
doi: 10.1038/srep16978
URL
|
[16] |
Chen M H, Liu Y, Wang Y L, Liu R, Xu B H, Zhang F, Li F P, Xu L, Lin Y H, He S W, Liao B Q, Fu X P, Wang X X, Yang X J, Wang H L. KIF2A regulates the spindle assembly and the metaphase I-anaphase I transition in mouse oocyte[J]. Scientific Reports, 2016, 6: 39337.doi: 10.1038/srep39337.
doi: 10.1038/srep39337
URL
|
[17] |
Kour A, Niranjan S K, Malayaperumal M, Surati U, Pukhrambam M, Sivalingam J, Kumar A, Sarkar M. Genomic diversity profiling and breed-specific evolutionary signatures of selection in arunachali yak[J]. Genes, 2022, 13(2): 254.doi: 10.3390/genes13020254.
doi: 10.3390/genes13020254
URL
|
[18] |
Qiu Q, Zhang G J, Ma T, Qian W B, Wang J Y, Ye Z Q, et al. The yak genome and adaptation to life at high altitude[J]. Nature Genetics, 2012, 44(8): 946-949.doi: 10.1038/ng.2343.
doi: 10.1038/ng.2343
pmid: 22751099
|
[19] |
Lan D L, Xiong X R, Huang C, Mipam T D, Li J. Toward understanding the genetic basis of yak ovary reproduction: A characterization and comparative analyses of estrus ovary transcriptiome in yak and cattle[J]. PLoS One, 2016, 11(4): e0152675.doi: 10.1371/journal.pone.0152675.
doi: 10.1371/journal.pone.0152675
URL
|
[20] |
Xiong X R, Ma H C, Min X Y, Su F, Xiong Y, Li J. Effects of demethylase KDM4B on the biological characteristics and function of yak cumulus cells in vitro[J]. Theriogenology, 2021, 174: 85-93.doi: 10.1016/j.theriogenology.2021.08.021.
doi: 10.1016/j.theriogenology.2021.08.021
URL
|
[21] |
Johnson A L, Lee J. Granulosa cell responsiveness to follicle stimulating hormone during early growth of hen ovarian follicles[J]. Poultry Science, 2016, 95(1): 108-114.doi: 10.3382/ps/pev318.
doi: 10.3382/ps/pev318
pmid: 26574040
|
[22] |
Ghanem K, Johnson A L. Response of hen pre-recruitment ovarian follicles to follicle stimulating hormone, in vivo[J]. General and Comparative Endocrinology, 2019, 270: 41-47.doi: 10.1016/j.ygcen.2018.10.004.
doi: 10.1016/j.ygcen.2018.10.004
URL
|
[23] |
Yang Y, Liu Q H, Xiao Y S, Wang X Y, An H, Song Z C, You F, Wang Y F, Ma D Y, Li J. Germ cell migration,proliferation and differentiation during gonadal morphogenesis in all-female Japanese flounder( Paralichthys olivaceus)[J]. Anatomical Record, 2018, 301(4): 727-741.doi: 10.1002/ar.23698.
doi: 10.1002/ar.23698
URL
|
[24] |
Renda F, Khodjakov A. Role of spatial patterns and kinetochore architecture in spindle morphogenesis[J]. Seminars in Cell & Developmental Biology, 2021, 117: 75-85.doi: 10.1016/j.semcdb.2021.03.016.
doi: 10.1016/j.semcdb.2021.03.016
|
[25] |
Lacroix B, Dumont J. Spatial and temporal scaling of microtubules and mitotic spindles[J]. Cells, 2022, 11(2): 248.doi: 10.3390/cells11020248.
doi: 10.3390/cells11020248
URL
|
[26] |
Hoffmann I. Centrosomes in mitotic spindle assembly and orientation[J]. Current Opinion in Structural Biology, 2021, 66: 193-198.doi: 10.1016/j.sbi.2020.11.003.
doi: 10.1016/j.sbi.2020.11.003
pmid: 33296732
|
[27] |
Tang F, Pan M H, Lu Y J, Wan X, Zhang Y, Sun S C. Involvement of Kif4a in spindle formation and chromosome segregation in mouse oocytes[J]. Aging and Disease, 2018, 9(4): 623-633.doi: 10.14336/AD.2017.0901.
doi: 10.14336/AD.2017.0901
|
[28] |
Blyth U, Craciunas L, Hudson G, Choudhary M. Maternal germline factors associated with aneuploid pregnancy loss: A systematic review[J]. Human Reproduction Update, 2021, 27(5): 866-884.doi: 10.1093/humupd/dmab010.
doi: 10.1093/humupd/dmab010
pmid: 33969392
|
[29] |
Xu R, Xu Y X, Huo W, Lü Z C, Yuan J S, Ning S K, Wang Q S, Hou M, Gao G, Ji J G, Chen J J, Guo R, Xu D Y. Mitosis-specific MRN complex promotes a mitotic signaling cascade to regulate spindle dynamics and chromosome segregation[J]. PNAS, 2018, 115(43): E10079-E10088.doi: 10.1073/pnas.1806665115.
doi: 10.1073/pnas.1806665115
|
[30] |
Miyamoto T, Hosoba K, Ochiai H, Royba E, Izumi H, Sakuma T, Yamamoto T, Dynlacht B D, Matsuura S. The microtubule-depolymerizing activity of a mitotic kinesin protein KIF2A drives primary Cilia disassembly coupled with cell proliferation[J]. Cell Reports, 2015, 10(5): 664-673.doi: 10.1016/j.celrep.2015.01.003.
doi: S2211-1247(15)00004-2
pmid: 25660017
|
[31] |
Jang C Y, Coppinger J A, Seki A, Yates J R, Fang G W. Plk1 and Aurora A regulate the depolymerase activity and the cellular localization of Kif2a[J]. Journal of Cell Science, 2009, 122(Pt 9): 1334-1341.doi: 10.1242/jcs.044321.
doi: 10.1242/jcs.044321
URL
|
[32] |
Gao H, Zhang Y, Li Y, Lin X. KIF2A regulates ovarian development via modulating cell cycle progression and vitollogenin levels[J]. Insect Molecular Biology, 2021, 30(2): 165-175.doi: 10.1111/imb.12685.
doi: 10.1111/imb.12685
pmid: 33251618
|
[33] |
Oh C K, Kang J W, Lee Y, Myung K, Ha M, Kang J, Kwon E J, Kim Y, Oh S O, Heo H J, Kim S, Kim Y H. Role of kif2c,a gene related to ALL relapse,in embryonic hematopoiesis in zebrafish[J]. International Journal of Molecular Sciences, 2020, 21(9): 3127.doi: 10.3390/ijms21093127.
doi: 10.3390/ijms21093127
URL
|
[34] |
Gilbert S P, Guzik-Lendrum S, Rayment I. Kinesin-2 motors: Kinetics and biophysics[J]. Journal of Biological Chemistry, 2018, 293(12): 4510-4518.doi: 10.1074/jbc.R117.001324.
doi: 10.1074/jbc.R117.001324
pmid: 29444824
|
[35] |
Miyata H, Oyama Y, Kaneda Y, Ikawa M. The motor domain of testis-enriched kinesin KIF9 is essential for its localization in the mouse flagellum[J]. Experimental Animals, 2022, 71(1): 46-52.doi: 10.1538/expanim.21-0082.
doi: 10.1538/expanim.21-0082
URL
|
[36] |
Das A, Cesario J, Hinman A M, Jang J K, McKim K S. Kinesin 6 regulation in Drosophila female meiosis by the non-conserved N-and C-terminal domains[J]. G3 Genes|Genomes|Genetics, 2018, 8(5): 1555-1569.doi: 10.1534/g3.117.300571.
doi: 10.1534/g3.117.300571
|
[37] |
Wang H H, Zhang Y, Tang F, Pan M H, Wan X, Li X H, Sun S C. Rab23/Kif17 regulate meiotic progression in oocytes by modulating tubulin acetylation and actin dynamics[J]. Development, 2019, 146(3): dev171280.doi: 10.1242/dev.171280.
doi: 10.1242/dev.171280
|
[38] |
Tian H, Ren P Y, Liu K L, Qiu C J, Fan L H, Li J L, Hou J. Transcriptomic comparison of ovarian granulosa cells between adult sheep and prepubertal lambs[J]. BMC Genomics, 2022, 23(1): 151.doi: 10.1186/s12864-022-08379-x.
doi: 10.1186/s12864-022-08379-x
pmid: 35189817
|
[39] |
马鸿程, 熊显荣, 王晗, 海卓, 闵星宇, 李键. 牦牛 PIK3CB基因克隆及其在卵泡发育过程中的表达研究[J]. 华北农学报, 2021, 36(1): 210-218. doi: 10.7668/hbnxb.20191376.
doi: 10.7668/hbnxb.20191376
|
|
Ma H C, Xiong X R, Wang H, Hai Z, Min X Y, Li J. Cloning of yak PIK3CB gene and its expression during follicular development[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(1): 210-218.
|
[40] |
海卓, 熊显荣, 马鸿程, 黄向月, 闵星宇, 李键. 牦牛KDM7A表达谱分析及其在卵母细胞减数分裂进程中的表达[J]. 华北农学报, 2020, 35(6): 217-224. doi: 10.7668/hbnxb.20191191.
doi: 10.7668/hbnxb.20191191
|
|
Hai Z, Xiong X R, Ma H C, Huang X Y, Min X Y, Li J. Analysis of KDM7A expression profile in yak and its expression in the process of oocyte meiosis[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(6):217-224.
|
[41] |
Tyasi T L, Sun X, Shan X S, Liswaniso S, Chimbaka I M, Qin N, Xu R F. Effects of RAC1 on proliferation of hen ovarian prehierarchical follicle granulosa cells[J]. Animals, 2020, 10(9): 1589.doi: 10.3390/ani10091589.
doi: 10.3390/ani10091589
URL
|
[42] |
Zhang Y, Wu J. Molecular cloning and characterization of a new gene, Oocyte-G1[J]. Journal of Cellular Physiology, 2009, 218(1): 75-83.doi: 10.1002/jcp.21569.
doi: 10.1002/jcp.21569
pmid: 18727094
|
[43] |
Kumar T R, Wang Y, Lu N F, Matzuk M M. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility[J]. Nature Genetics, 1997, 15(2): 201-204.doi: 10.1038/ng0297-201.
doi: 10.1038/ng0297-201
pmid: 9020850
|
[44] |
Joe H. Molecular motors: Structural adaptations to cellular functions[J]. Nature, 1997, 389(6651): 561-567.doi: 10.1038/39247.
doi: 10.1038/39247
URL
|
[45] |
Miki H, Okada Y, Hirokawa N. Analysis of the kinesin superfamily: Insights into structure and function[J]. Trends in Cell Biology, 2005, 15(9): 467-476.doi: 10.1016/j.tcb.2005.07.006.
doi: 10.1016/j.tcb.2005.07.006
pmid: 16084724
|
[46] |
Tiwari M, Gupta A, Sharma A, Prasad S, Pandey A N, Yadav P K, Pandey A K, Shrivastav T G, Chaube S K. Role of mitogen activated protein kinase and maturation promoting factor during the achievement of meiotic competency in mammalian oocytes[J]. Journal of Cellular Biochemistry, 2018, 119(1): 123-129.doi: 10.1002/jcb.26184.
doi: 10.1002/jcb.26184
pmid: 28574608
|