[1] 马兴树. 禽大肠杆菌病疫苗研究进展[J].中国畜牧兽医, 2015, 42(1):234-244.doi:10.16431/j.cnki.1671-7236.2015.01.037. Ma X S. Research progress on vaccines of avian colibacillosis[J]. China Animal Husbandry & Veterinary Medicine, 2015, 42(1):234-244. [2] Awad A M, El-Shall N A, Khalil D S, Abd El-Hack M E, Swelum A A, Mahmoud A H, Ebaid H, Komany A, Sammour R H, Sedeik M E. Incidence, pathotyping, and antibiotic susceptibility of avian pathogenic Escherichia coli among diseased broiler chicks[J]. Pathogens, 2020, 9(2):114. [3] Hvistendahl M. China takes aim at rampant antibiotic resistance[J]. Science, 2012, 336(6083):795-795.doi:10.1126/science.336.6083.795. [4] Gong J S, Xu M, Zhu C H, Miao J F, Liu X X, Xu B, Zhang J Q, Yu Y, Jia X B. Antimicrobial resistance, presence of integrons and biofilm formation of Salmonella Pullorum isolates from Eastern China(1962-2010)[J]. Avian Pathology, 2013, 42(3):290-294.doi:10.1080/03079457.2013.788129. [5] Tivendale K A, Logue C M, Kariyawasam S, Jordan D, Hussein A, Li G W, Wannemuehler Y, Nolan L K. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease[J]. Infection and Immunity, 2010, 78(8):3412-3419.doi:10.1128/iai.00347-10. [6] Mitchell N M, Johnson J R, Johnston B, Curtiss R, Mellata M. Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs[J]. Applied and Environmental Microbiology, 2015, 81(3):1177-1187.doi:10.1128/AEM.03524-14. [7] Sun H Y. Deciphering alternative splicing and nonsense-mediated decay modulate expression in primary lymphoid tissues of birds infected with avian pathogenic E. coli (APEC)[J]. BMC Genetics, 2017, 18(1):21.doi:10.1186/s12863-017-0488-4. [8] Ewers C, Antão E M, Diehl I, Philipp H C, Wieler L H. Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential[J]. Applied and Environmental Microbiology, 2009, 75(1):184-192.doi:10.1128/AEM.01324-08. [9] Manges A R. Escherichia coli and urinary tract infections:The role of poultry-meat[J]. Clinical Microbiology and Infection, 2016, 22(2):122-129.doi:10.1016/j.cmi.2015.11.010. [10] Hotinger J A, May A E.Animal models of type Ⅲ secretion system-mediated pathogenesis[J]. Pathogens. 2019, 8(4):257.doi:10.3390/pathogens8040257. [11] Makino S I, Tobe T, Asakura H, Watarai M, Ikeda T, Takeshi K, Sasakawa C. Distribution of the secondary type Ⅲ secretion system locus found in enterohemorrhagic Escherichia coli O157:H7 isolates among Shiga toxin-producing E. coli strains[J]. Journal of Clinical Microbiology, 2003, 41(6):2341-2347.doi:10.1128/JCM.41.6.2341-2347.2003. [12] Hartleib S, Prager R, Hedenström I, Löfdahl S, Tschäpe H. Prevalence of the new, SPI1-like, pathogenicity island ETT2 among Escherichia coli[J]. International Journal of Medical Microbiology, 2003, 292(7/8):487-493.doi:10.1078/1438-4221-00224. [13] Ren C P, Chaudhuri R R, Fivian A, Bailey C M, Antonio M, Barnes W M, Pallen M J. The ETT2 gene cluster, encoding a second type Ⅲ secretion system from Escherichia coli, is present in the majority of strains but has undergone widespread mutational attrition[J]. Journal of Bacteriology, 2004, 186(11):3547-3560.doi:10.1128/JB.186.11.3547-3560.2004. [14] Cheng D R, Zhu S Y, Su Z R, Zuo W Y, Lu H. Prevalence of the E.coli type three secretion system 2(ETT2) locus among enterotoxigenic E. coli (ETEC), shigatoxin-producing E.coli(STEC) from weaned piglets[J]. African Journal of Microbiology Research, 2011, 5(26):4697-4701.doi:10.5897/AJMR11.768. [15] 易正飞. Ⅲ型分泌系统2效应因子及双组分系统CpxR对禽致病性大肠杆菌毒力的影响[D].北京:中国农业科学院, 2020. Yi Z F. Effects of Escherichia Coli Type Ⅲ Secretion System 2(ETT2) effector and two-component system CpxR on the virulence of avian pathogenic Escherichia Coli[D].Beijing:Chinese Academy of Agricultural Sciences, 2020. [16] 尹磊. ETT2和phoP在禽致病性大肠杆菌生物被膜形成及致病性研究[D].合肥:安徽农业大学, 2019. Yin L. The roles of ETT2 and phoP in the biofilm formation and pathogenicity of avian pathogenic Escherichia coli[D].Hefei:Anhui Agricultural University, 2019. [17] Bröms J E, Edqvist P J, Forsberg Å, Francis M S. Tetratricopeptide repeats are essential for PcrH chaperone function in Pseudomonas aeruginosa type Ⅲ secretion[J]. FEMS Microbiology Letters, 2006, 256(1):57-66.doi:10.1111/j.1574-6968.2005.00099.x. [18] Büttner C R, Sorg I, Cornelis G R, Heinz D W, Niemann H H. Structure of the Yersinia enterocolitica type Ⅲ secretion translocator chaperone SycD[J]. Journal of Molecular Biology, 2008, 375(4):997-1012.doi:10.1016/j.jmb.2007.11.009. [19] Edqvist P J, Bröms J E, Betts H J, Forsberg Å, Pallen M J, Francis M S. Tetratricopeptide repeats in the type Ⅲ secretion chaperone, LcrH:Their role in substrate binding and secretion[J]. Molecular Microbiology, 2006, 59(1):31-44.doi:10.1111/j.1365-2958.2005.04923.x. [20] Johnson T J, Wannemuehler Y, Kariyawasam S, Johnson J R, Logue C M, Nolan L K. Prevalence of avian-pathogenic Escherichia coli strain O1 genomic Islands among extraintestinal and commensal E. coli isolates[J]. Journal of Bacteriology, 2012, 194(11):2846-2853.doi:10.1128/JB.06375-11. [21] Zhao Y Y, Gorvel J P, Méresse S. Effector proteins support the asymmetric apportioning of Salmonella during cytokinesis[J]. Virulence, 2016, 7(6):669-678.doi:10.1080/21505594.2016.1173298. [22] Schreiber K J, Baudin M, Hassan J A, Lewis J D. Die another day:Molecular mechanisms of effector-triggered immunity elicited by type Ⅲ secreted effector proteins[J]. Seminars in Cell & Developmental Biology, 2016, 56:124-133.doi:10.1016/j.semcdb.2016.05.001. [23] Mora A, López C, Dabhi G, Blanco M, Blanco J E, Alonso M P, Herrera A, Mamani R, Bonacorsi S, Moulin-Schouleur M, Blanco J. Extraintestinal pathogenic Escherichia coli O1:K1:H7/NM from human and avian origin:detection of clonal groups B2 ST95 and D ST59 with different host distribution[J]. BioMed Central, 2009, 9(1):132.doi:10.1186/1471-2180-9-132. [24] Wang S H, Liu X, Xu X, Yang D H, Wang D, Han X G, Shi Y H, Tian M X, Ding C, Peng D X, Yu S Q. Escherichia coli type Ⅲ secretion system 2 ATPase EivC is involved in the motility and virulence of avian pathogenic Escherichia coli[J]. Frontiers in Microbiology, 2016, 7:1387.doi:10.3389/fmicb.2016.01387. [25] Ghosh P. Process of protein transport by the type Ⅲ secretion system[J]. Microbiology and Molecular Biology Reviews, 2004, 68(4):771-795.doi:10.1128/MMBR.68.4.771-795.2004. [26] Parsot C, Hamiaux C, Page A L. The various and varying roles of specific chaperones in type Ⅲ secretion systems[J]. Current Opinion in Microbiology, 2003, 6(1):7-14.doi:10.1016/s1369-5274(02) 00002-4. [27] Wainwright L A, Kaper J B. EspB and EspD require a specific chaperone for proper secretion from enteropathogenic Escherichia coli[J]. Molecular Microbiology, 1998, 27(6):1247-1260.doi:10.1046/j.1365-2958.1998.00771.x. [28] Tucker S C, Galán J E. Complex function for SicA, a Salmonella enterica serovar typhimurium type Ⅲ secretion-associated chaperone[J]. Journal of Bacteriology, 2000, 182(8):2262-2268.doi:10.1128/JB.182.8.2262-2268.2000. [29] Neyt C, Cornelis G R. Role of SycD, the chaperone of the Yersinia yop translocators YopB and YopD[J]. Molecular Microbiology, 1999, 31(1):143-156.doi:10.1046/j.1365-2958.1999.01154.x. [30] Yang H Y, Tan Y F, Zhang T T, Tang L J, Wang J, Ke Y H, Guo Z B, Yang X M, Yang R F, Du Z M. Identification of novel protein-protein interactions of Yersinia pestis type Ⅲ secretion system by yeast two hybrid system[J]. PLoS One, 2013, 8(1):e54121.doi:10.1371/journal.pone.0054121. [31] Page A L, Fromont-Racine M, Sansonetti P, Legrain P, Parsot C. Characterization of the interaction partners of secreted proteins and chaperones of Shigella flexneri[J]. Molecular Microbiology, 2001, 42(4):1133-1145.doi:10.1046/j.1365-2958.2001.02715.x. [32] Cherradi Y, Hachani A, Allaoui.Spa13 of Shigella flexneri has a dual role:chaperone escort and export gate-activator switch of the type Ⅲ secretion system[J]. Microbiology, 2014, 160(1):130-141.doi:10.1099/mic.0.071712-0. [33] 柴政斌, 张更林, 王学政, 韩金祥. 融合蛋白GST-PADI4可溶性表达条件的优化及纯化[J].中国生物制品学杂志, 2014, 27(3):404-408, 411.doi:10.13200/j.cnki.cjb.000201. Chai Z B, Zhang G L, Wang X Z, Han J X. Optimization of condition for soluble expression of GST-PADI4 fusion protein and purification of expressed product[J]. Chinese Journal of Biologicals, 2014, 27(3):404-408, 411. |