[1] 林源, 周夏芝, 毕守东, 邹运鼎, 马飞, 程遐年, 柯磊, 杨林, 郭骅. 中稻田三种飞虱的捕食性天敌优势种及农药对天敌的影响[J].生态学报, 2013, 33(7):2189-2199. doi:10.5846/stxb201112171926. Ln Y, Zhou X Z, Bi S D, Zou Y D, Ma F, Cheng X N, Ke L, Yang L, Guo H.The dominant species of predatory natural enemies of three kinds of planthoppers and impact of pesticides on natural enemies in paddy field[J]. Acta Ecologica Sinica, 2013, 33(7):2189-2199. [2] 赵敬钊, 袁爱荣, 余克庆. 温度对拟环纹豹蛛发育和繁殖力的影响[J]. 湖北大学学报(自然科学版), 1989(1):1-9. Zao J Z, Yuan A R, Yu K Q. Effects of temperature on the development and fertility of Pardosa pseudoannulata[J]. Journal of Hubei University (Natural Science), 1989(1):1-9. [3] 赵敬钊. 温度对蜘蛛个体发育的影响[J]. 蛛形学报, 2001,10(1):58-64.doi:10.3969/j.issn.1005-9628.2001.01.017. Zao J Z. Effects of temperature on spider individual ontogeny[J]. Acta Arachnologica Sinica, 2001,10(1):58-64. [4] 赵敬钊, 刘凤想, 常瑾, 彭宇. 温度对蜘蛛繁殖力和实验种群的影响[J]. 生态学报, 2002,22(9):1470-1477. doi:10.3321/j.issn:1000-0933.2002.09.015. Zao J Z, Liu F X, Chang J, Peng Y. Effects of temperature on fecundity and the experimental population of spiders[J]. Acta Ecologica Sinica, 2002,22(9):1470-1477. [5] 孙继英, 彭光旭, 胡波, 付秀芹, 颜亨梅. 拟环纹豹蛛种群遗传多样性与其生境的关系[J]. 应用生态学报, 2007, 18(5):1081-1085. doi:10.13287/j.1001-9332.2007.0181. Sn J Y, Peng G X, Hu B, Fu X Q, Yan H M. Genetic diversity of pardosa pseudoannulata population and its relationships with habitats[J]. Chinese Journal of Applied Ecology, 2007,18(5):1081-1085. [6] 王洪全, 周家友, 刘贵匀. 拟环纹狼蛛的生物学研究[J]. 动物学报, 1982(1):69-79. Wng H Q, Zhou J Y, Liu G Y. Study on the ecology of Pardosa pseudoannulata[J]. Acta Zoologica Sinica, 1982(1):69-79. [7] 唐美蓉, 赵丽, 魏宝阳, 王智. 温度对拟环纹豹蛛的捕食功能反应的影响[J]. 湖南农业科学, 2016(9):55-58.doi:10.16498/j.cnki.hnnykx.2016.09.017. Tng M R, Zhao L, Wei B Y, Wang Z. Effect of temperature on the predation of Pardosa pseudoannulata[J]. Hunan Agricultural Sciences, 2016(9):55-58. [8] 唐梅森. 基于DNA单核苷酸多态性和甲基化修饰探讨早发冠心病血瘀证的相关易感基因的研究[D]. 长沙:湖南中医药大学, 2012. Tng M S. Research in susceptibility genes associated with premature coronaryheart disease blood stasis syndrome based on single nucleotide polymorphisms and DNA methylation[D]. Changsha:Hunan University of Chinese Medicine, 2012. [9] 赵辉, 李启寨, 李俊, 曾长青, 胡松年, 于军. 相邻碱基组分与产生SNP的转换或颠换在植物基因组中的研究[J]. 中国科学C辑(生命科学), 2006,36(1):1-8. doi:10.3321/j.issn:1006-9259.2006.01.001. Zao H, Li Q Z, Li J, Zeng C Q, Hu S N, Yu J. Studies on conversion or transversion of neighboring base components and SNP generation in plant genomes[J], Science Inchina Ser C(Life Sciences), 2006,36(1):1-8. [10] Lander E S. The new genomics:global views of biology[J]. Science, 1996,274(5287):536-539. doi:10.1126/science.274.5287.536. [11] 陈丝, 郭燕, 杨春, 李燕. 单核苷酸多态性在茶树中应用的研究进展[J]. 食品安全质量检测学报, 2018, 9(2):243-247. doi:10.3969/j.issn.2095-0381.2018.02.005. Cen S, Guo Y, Yang C, Li Y. Review on single nucleotide polymorphisms application in tea plant (Camellia sinensis)[J]. Journal of Food Safety and Quality, 2018, 9(2):243-247. [12] Li R Q, Li Y R, Fang X D, Yang H M, Wang J,Kristiansen K, Wang J. SNP detection for massively parallel whole-genome resequencing[J]. Genome Research, 2009, 19(6):1124-1132. doi:10.1101/gr.088013.108. [13] Patterson N, Hattangadi N, Lane B, Lohmueller K E, Hafler D A, Oksenberg J R, Hauser S L, Smith M W, O'Brien S J, Altshuler D, Daly M J, Reich D. Methods forhigh-density admixture mapping of disease genes[J].The American Journal of Human Genetics, 2004, 74(5):979-1000. doi:10.1086/420871. [14] Liu R Z, Geng P L, Ma M H, Yu S Y, Wang X L, Zhang W, Di H. Association between endothelial nitric oxide synthase gene polymorphisms (T-786C) and ischemic stroke susceptibility:A meta-analysis[J]. International Jurnal of Neuroscience, 2014, 124(9):642-651. doi:10.3109/00207454.2013.873978. [15] Lai E. Application of SNP technologies in medicine:lessons learned and future challenges[J]. Genome Research, 2001, 11(6):927-929. doi:10.1101/gr.192301. [16] Septiningsih E M, Pamplona A M, Sanchez D L, Neeraja C N, Vergara G V, Heuer S, Ismail A M, Mackill D J. Development of submergence-tolerant rice cultivars:the Sub1 locus and beyond[J]. Annals of Botany, 2009, 103(2):151-160. doi:10.1093/aob/mcn206 [17] Naidoo R, Watson G M F, Derera J, Tongoona P, Laing M D. Marker-assisted selection for low phytic acid (lpa1-1) with single nucleotide polymorphism marker and amplified fragment length polymorphisms for background selection in a maize backcross breeding programme[J]. Molecular Breeding, 2012, 30(2):1207-1217. doi:10.1007/s11032-012-9709-8. [18] Rahman M, Asif M, Shaheen T, Tabbasam N, Zafar Y, Paterson A H. Marker-assisted breeding in Higher Plants[D]. Faisalabad:National Institute for Biotechnology and Genetic Engineering, 2011:39-76. doi:10.1007/978-94-007-0186-1_3. [19] Xiao R, Wang L, Cao Y S, Zhang G R. Transcriptome response to temperature stress in the wolf spider Pardosa pseudoannulata (Araneae:Lycosidae)[J]. Ecology and Evolution, 2016, 6(11):3540-3554. doi:10.1002/ece3.2142. [20] 陈柏湘, 王伟峰, 王卫民, 王焕岭. 团头鲂低氧耐受相关SNPs标记的开发[J]. 华中农业大学学报, 2019, 38(2):23-29. doi:10.13300/j.cnki.hnlkxb.2019.02.004. Cen B X, Wang W F, Wang W M, Wang H L. Isolation of SNP markers associated with hypoxia tolerance in Megalobrama amblycephala[J]. Journal of Huazhong Agricultural University,2019, 38(2):23-29. [21] Hu W M. Development of 31 EST-SNP markers in Glycyrrhiza uralensis Fisch (Leguminosae) based on transcriptomics[J]. Conservation Genetics Resources, 2019:1-5. doi:10.1007/s12686-019-01101-2. [22] 王晓歌, 阴祖军, 王俊娟, 王德龙, 樊伟丽, 王帅, 叶武威. 陆地棉转录组耐盐相关SNP挖掘及分析[J].分子植物育种, 2016, 14(6):1524-1532. doi:10.13271/j.mpb.014.001524. Wng X G, Yin Z J, Wang J J, Wang D L, Fan W L, Wang S, Ye W W. Mining and analyzing of SNP related to salinity stress in transcriptome of upload cotton (Gossypium hirsutum L.)[J]. Molecular Plant Breeding, 2016, 14(6):1524-1532. [23] Xu M, Qiang F L, Gao Y, Kang M Y, Wang M L, Tao G Q, Gong W D, Zhu H X, Wu D G, Zhang Z D, Zhao Q H. Evaluation of a novel functional single-nucleotide polymorphism (rs35010275 G>C) in MIR196A2 promoter region as a risk factor of gastric cancer in a Chinese population[J]. Medicine, 2014, 93(26):e173. doi:10.1097/MD.0000000000000173. [24] Yang C Y, Wang L L, Liu C H, Zhou Z,Zhao X,Song L S. The polymorphisms in the promoter of HSP90 gene and their association with heat tolerance of bay scallop[J]. Cell Stress and Chaperones, 2015, 20(2):297-308.doi:10.1007/s12192-014-0546-z. [25] Lu F H, Yoon M Y, Cho Y I, Chung J W, Kim K T, Cho M C, Cheong S R, ParkY J. Transcriptome analysis and SNP/SSR marker information of red pepper variety YCM334 and Taean[J]. Scientia Horticulturae, 2011, 129(1):38-45.doi:10.1016/j.scienta.2011.03.003. [26] 梁芳,张继,吕平,龙凌云,黄惠芳,檀小辉,韦丽君. 基于EST序列的玫瑰EST-SNP位点发掘与分析[J]. 南方农业学报,2016,47(3):325-331.doi:10.3969/j:issn.2095-1191.2016.03.325. Lang F, Zhang J, Lü P, Long L Y, Huang H F, Tan X H, Wei L J. Discovery and analysis of Rosa rugosa EST-SNP site based on EST sequences[J]. Journal of Southern Agriculture, 2016, 47(3):325-331. [27] Somers D J, Kirkpatrick R, Moniwa M, Walsh A. Mining single-nucleotide polymorphisms from hexaploid wheat ESTs[J]. Genome, 2003, 46(3):431-437. doi:10.1139/g03-027. [28] 王丽鸳, 张成才, 成浩, 韦康. 茶树EST-SNP分布特征及标记开发[J]. 茶叶科学, 2012, 32(4):369-376. doi:10.13305/j.cnki.jts.2012.04.014. Wng L Y, Zhang C C, Cheng H, Wei K. Characterization of EST-derived SNPs and development of SNP-markers in tea (Camellia sinensis)[J]. Journal of Tea Science, 2012, 32(4):369-376. [29] Varshney R K, Beier U, Khlestkina E K, Kota R, Korzun V, Graner A, Börner A. Single nucleotide polymorphisms in rye (Secale cereale L.):discovery, frequency, and applications for genome mapping and diversity studies[J]. Theoretical and Applied Genetics, 2007, 114(6):1105-1116. doi:10.1007/s00122-007-0504-6. [30] Lijavetzky D, Cabezas J A, Ibáñez A, Rodríguez V, Martínez-Zapater J M. High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology[J]. BMC Genomics, 2007, 8(1):424. doi:10. 1186/1471-2164-8-424. [31] Wieser W. Temperature relations of ectotherms:a speculative review[M]//Effects of temperature on ectothermic organisms.Springer, 1973:1-23. doi:10.1007/978-3-642-65703-0_1. [32] Clarke A, Johnston N M. Scaling of metabolic rate with body mass and temperature in teleost fish[J]. Journal of Animal Ecology, 1999, 68(5):893-905. doi:10.1046/j.1365-2656.1999.00337.X. [33] Windisch H S, Frickenhaus S, John U, Knust R, Pörtner H O, Lucassen M. Stress response or beneficial temperature acclimation:transcriptomic signatures in Antarctic fish(Pachycara brachycephalum)[J]. Molecular Ecology, 2014, 23(14):3469-3482. doi:10.1111/mec.12822. [34] Korobeinikova A V, Garber M B, Gongadze G M. Ribosomal proteins:structure, function, and evolution[J]. Biochemistry (Moscow), 2012, 77(6):562-574. doi:10.1134/S0006297912060028. [35] Pörtner H. Climate change and temperature-dependent biogeography:oxygen limitation of thermal tolerance in animals[J]. Naturwissenschaften, 2001, 88(4):137-146. doi:10.1007/s001140100216. [36] Pörtner H O. Oxygen-and capacity-limitation of thermal tolerance:a matrix for integrating climate-related stressor effects in marine ecosystems[J]. The Journal of Experimental Biology, 2010, 213:881-893. doi:10.1242/jeb.037523. [37] Múgica M, Sokolova I M, Izagirre U, Marigómez I. Season-dependent effects of elevated temperature on stress biomarkers, energy metabolism and gamete development in mussels[J]. Marine Environmental Research, 2015, 103:1-10. doi:10.1016/j.marenvres.2014.10.005. [38] Kooijman B, Kooijman S. Dynamic energy budget theory for metabolic organization[D].Cambridge:Cambridge University Press, 2010. |