[1] Iversen C M,Childs J,Norby R J,et al.Fine-root growth in a forested bog is seasonally dynamic,but shallowly distributed in nutrient-poor peat[J].Plant and Soil,2018,424(1-2):123-143.
[2] Meena H N,Meena M,Yadav R S. Comparative performance of seed types on yield potential of peanut (Arachis hypogaea L.) under saline irrigation[J]. Field Crops Research,2016,196:305-310.
[3] Kumar K,Amaresan N,Madhuri K. Alleviation of the adverse effect of salinity stress by inoculation of plant growth promoting rhizobacteria isolated from hot humid tropical climate[J]. Ecological Engineering,2017,102:361-366.
[4] 慈敦伟,戴良香,宋文武,等. 花生萌发至苗期耐盐胁迫的基因型差异[J]. 植物生态学报,2013,37(11):1018-1027.
[5] 王琳琳,李素艳,孙向阳,等. 不同隔盐措施对滨海盐碱地土壤水盐运移及刺槐光合特性的影响[J]. 生态学报,2015,35(5):1388-1398.
[6] 张智猛,戴良香,慈敦伟,等. 种植密度和播种方式对盐碱地花生生长发育,产量及品质的影响[J]. 中国生态农业报,2016,24(10):1328-1338.
[7] 孟德云,侯林琳,杨莎,等. 外源多胺对盆栽花生盐胁迫的缓解作用[J]. 植物生态学报,2015,39(12):1209-1215.
[8] 刘长坤.气候变化条件下黄河三角洲水资源时空演变特征研究[D].南京:南京信息工程大学,2012.
[9] Han G X,Luo Y Q,Li D J,et al. Ecosystem photosynthesis regulates soil respiration on a diurnal scale with a short-term time lag in a coastal wetland[J]. Soil Biology & Biochemistry,2014,68(1):85-94.
[10] 赵长星,程曦,王月福,等. 不同生育时期干旱胁迫对花生生长发育和复水后补偿效应的影响[J]. 中国油料作物学报,2012,34(6):627-632.
[11] Hsiao T C.Plant responses to water stress[J].Annu Rev Plant Physiol,1973,24:519-570.
[12] Giannopolitis C N,Ries S K. Superoxide dismutases:I. Occurrence in higher plants[J]. Plant Physiology,1977,59(2):309-314.
[13] Azarabadi S,Abdollahi H,Torabi M A,et al. ROS Generation,oxidative burst and dynamic expression profiles of ROS-scavenging enzymes of superoxide dismutase (SOD),catalase (CAT) and ascorbate peroxidase (APX) in response to Erwinia amylovora in pear(Pyrus communis L.)[J]. European Journal of Plant Pathology,2017,147(2):279-294.
[14] 张治安,陈展宇. 植物生理学实验技术[M]. 长春:吉林大学出版社,2008.
[15] 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000:164-179.
[16] 赵世杰,许长成,邹琦,等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学通讯,1994,30(3):207-210.
[17] 刘爱荣,张远兵,钟泽华,等. 盐胁迫对彩叶草生长和渗透调节物质积累的影响[J]. 草业学报,2013,22(2):211-218.
[18] Gill S S,Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry,2010,48(12):909-930.
[19] 邢建宏,潘德灼,谭芳林,等. NaCl胁迫对秋茄根系渗透调节物质含量的影响[J]. 生态环境学报,2017,26(11):1865-1871.
[20] 李州,王晓娟,彭丹丹,等. Na+对水分胁迫下白三叶抗氧化防御和有机渗透调节物质的影响[J]. 草业学报,2014,23(5):175-183.
[21] 周钰佩,刘慧霞,于成,等. 硅对不同盐生境下高羊茅生物量及渗透调节物质含量的影响[J]. 生态学报,2017,37(16):5514-5521.
[22] 刘建新,王金成,王瑞娟,等. 旱盐交叉胁迫对燕麦幼苗生长和渗透调节物质的影响[J]. 水土保持学报,2012,16(3):244-248.
[23] Larkindale J,Huang B.Thermotolerance and antioxidant systems in Agrostis stolonifera:involvement of salicylic acid. abscisic acid,calcium,hydrogen peroxide,and ethylene[J]. Journal of Plant Physiology,2004,161(4):405-413.
[24] 华智锐,李小玲. 盐旱交叉胁迫对小麦幼苗渗透调节能力的影响[J]. 山西农业科学,2017,45(2):166-171.
[25] 刘金萍,高奔,李欣,等. 盐旱互作对不同生境盐地碱蓬种子萌发和幼苗生长的影响[J]. 生态学报,2010,30(20):5485-5490.
[26] 黄玮,李志刚,乔海龙,等. 旱盐互作对盐地碱蓬生长及其渗透调节物质的影响[J]. 中国生态农业学报,2008,16(1):173-178.
[27] 李久道,金华,朴世领,等. 羊草根,叶在干旱和盐胁迫下的生理反应[J]. 草业科学,2017,34(8):1705-1710.
[28] 陈成升,谢志霞,刘小京. 旱盐互作对冬小麦幼苗生长及其抗逆生理特性的影响[J]. 应用生态学报,2009,20(4):811-816.
[29] 姚海梅,李永生,张同祯,等. 旱-盐复合胁迫对玉米种子萌发和生理特性的影响[J]. 应用生态学报,2016,27(7):2301-2307. |