[1] Ogawa E, Yamada Y, Sezaki N, Kosaka S A, Kamata N, Abe M, Komeda Y, Takahashi T. ATML1 and PDF2 play a redundant and essential role in Arabidopsis embryo development[J].Plant and Cell Physiology,2015,56(6):1183-1192.doi:10.1093/pcp/pcv045. [2] Rombola-Caldentey B, Rueda-Romero P A, Carbonero P, Onate-Sanchez L. Arabidopsis DELLA and two HD-ZIP transcription factors regulate GA signaling in the epidermis through the L1 box cis-Element[J].Plant Cell,2014,26(7):2905-2919.doi:10.1105/tpc.114.127647. [3] Zhu Y, Rong L, Luo Q, Wang B H, Zhou N A, Yang Y E, Zhang C, Feng H Y, Zheng L A, Shen W H, Ma J B, Dong A W. The histone chaperone NRP1 interacts with WEREWOLF to activate GLABRA2 in Arabidopsis root hair development[J].Plant Cell,2017,29(2):260-276.doi:10.1105/tpc.16.00719. [4] Schrick K, Nguyen D, Karlowski W M, Mayer K F. START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors[J].Genome Biology,2004,5(6):R41.doi:10.1186/gb-2004-5-6-r41. [5] Tang D Z, Ade J, Frye C A, Innes R W. Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein[J].Plant Journal,2005,44(2):245-257.doi:10.1111/j.1365-313X.2005.02523.x. [6] Shaw G.Identification of novel pleckstrin homology(PH)domains provides a hypothesis for PH domain function[J].Biochemical and Biophysical Research Communications, 1993, 195(2):1145-1151.doi:10.1006/bbrc.1993.2164. [7] Sneha R, Pallavi M, Modeling S B. Dynamics and phosphoinositide binding of the pleckstrin homology domain of two novel PLCs:η1 and η2[J].Journal of Molecular Graphics & Modelling,2018(85):130-144.doi:10.1016/j.jmgm.2018.07.012. [8] Kang Y L, Kim B G, Kim S, Lee Y A.Inhibitory potential of flavonoids on Ptdlns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain[J].Bioorganic & Medicinal Chemistry Letters,2017,27(3):420-426.doi:10.1016/j.bmc1.2016.12.051. [9] Rebecchi M J, Scarlata S.Pleckstrin homology domains:A common fold with diverse functions[J].Annual Review of Biophysics and Biomolecular Structure,1998,27(4):503.doi:10.1146/annurev.biophys.27.1.503. [10] Naughton F B, Kalli A C, Sansom M S. Modes of interaction of pleckstrin homology domains with membranes:toward a computational biochemistry of membrane recognition[J].Journal of Molecular Biology,2018,430(3):372-388.doi:10.1016/j.jmb.2017.12.011. [11] Kalli A C, Campbell I D, Sansom M S. Interactions of the kindlin family pleckstrin homology domains with model membranes containing zwitterionic lipids and phosphatidyl inositol phosphates[J].Biophysical Journal,2014,106(2, 1):517A.doi:10.1016/j.bpj.2013.11.2889. [12] Goraia S, Bagdia P R, Boraha R, Paulb D, Santrab M K, Khanc A T, Mannaa D. Insights into the inhibitory mechanism of triazole-based small molecules on phosphatidylinositol-4,5-bisphosphate binding pleckstrin homology domain[J].Biochemistry and Biophysics Reports, 2015, 2:75-86.doi:10.1016/j.bbrep.2015.05.007. [13] Panda P K, Behera B, Meher B R, Mukhopadhyay S, Sinha N A, Roy B, Das J, Paul S, Maiti T K, Agarwal R, Bhutia S K. Abrus agglutinin, a type Ⅱ ribosome inactivating protein inhibits Akt/PH domain to induce endoplasmic reticulum stress mediated autophagy-dependent cell death[J].Molecular Carcinogenesis,2017,56(2):389-401.doi:10.1002/mc.22502. [14] Lemmon M A.Phosphoinositide recognition domains[J].Traffic,2003,4(4):201-213.doi:10.1034/j.1600-0854.2004.00071.x. [15] Kumagai K, Elwell C A, Ando S, Engel J N, Hanada K.Both the N-and C-terminal regions of the Chlamydial inclusion protein D (IncD) are required for interaction with the pleckstrin homology domain of the ceramide transport protein CERT[J].Biochemical and Biophysical Research Communications,2018,505(4):1070-1076.doi:10.1016/j.bbrc.2018.09.168. [16] 周苹. GH3.9 基因过表达对拟南芥生长发育的影响研究[D]. 长沙:湖南大学, 2013.doi:10.7666/d.Y2523085. Zhou P. Effect of over-expression og GH3.9 gene on the plant growth and development of Arabidopsis[D]. Changsha:Hunan University, 2013. [17] Romanowski M J, Soccio R E, Breslow J L, Burley S K.Crystal structure of the Mus musculus cholesterol-regulated START protein 4(StarD4) containing a StAR-related lipid transfer domain[J].Proceedings of the National Academy of Sciences of the United States of America,2002,99(10):6949-6954.doi:10.1073/pnas.052140699. [18] Kang Y, Jang G, Ahn S, Lee Y A, Yoon Y. Regulation of AKT activity by inhibition of the pleckstrin homology Doniam-PtdIns(3,4,5)P-3 interaction using flavonoids[J].Journal of Microbiology and Biotechnology,2018,28(8):1401-1411.doi:10.4014/jmb.1804.04051. [19] Yamada S, Yamaguchi T, Hosoda A, Iwawaki T, Kohno K. Regulation of human STARD4 gene expression under endoplasmic reticulum stress[J].Biochemical and Biophysical Research Communications,2006,343(4):1079-1085.doi:10.1016/j.bbrc.2006.03.051. [20] Sluchanko N N, Tugaeva K V, Maksimov E G.Solution structure of human steroidogenic acute regulatory protein STARD1 studied by small-angle X-ray scattering[J].Biochemical and Biophysical Research Communications,2017,489(4):445-450.doi:10.1016/j.bbrc.2017.05.167. [21] Kubo H, Peeters A J, Aarts M G, Pereira A, Koornneef M.ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis[J].The Plant Cell,1999,11(7):1217-1226.doi:10.2307/3870744. [22] Schrick K, Bruno M, Khosla A, Cox P N, Marlatt S A, Roque R A, Nguyen H C, Snyder M P, Singh D, Yadav G.Shared functions of plant and mammalian StAR-related lipid transfer (START) domains in modulating transcription factor activity[J].BMC Biology,2014,12:70-78.doi:10.1186/s12915-014-0070-8. |