[1] Moore B,Oerez V J. Physiological and biochemical aspects of nervous integration( Carlson F D,Ed.) [M]. NJ: Prentice-Hall,Englewood Cliffs,1967: 343-359.
[2] Michael B Y. How do 14-3-3 proteins work -Gatekeeper phosphorylation and the molecular anvil hypothesis[J]. FEBS Letters,2002,513: 53-57.
[3] Deborah K. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development[J]. Trends in Cell Biology,2009,19( 1) : 16-23.
[4] Freeman A K,Morrison D K. 14-3-3 Proteins: Diverse functions in cell proliferation and cancer progression[J]. Seminars in Cell & Developmental Biology,2011,22( 7) : 681-687.
[5] Taoka K,Ohki I,Tsuji H, et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen[J]. Nature, 2011,476: 332-335.
[6] Shin R, Jez J M,Basra A, et al. 14-3-3 proteins fine-tune plant nutrient metabolism[J]. FEBS Letters,2011,585( 1) : 143-147.
[7] Tang Y J,Zhang W,Liu R S, et al. Scale-up study on the fed-batch fermentation of the medicinal mushroom Ganoderma lucidum for the hyperproduction of ganoderic acid and Ganoderma polysaccharides in stirred-tank bioreactor[J]. Process Biochemistry,2011,46( 1) : 404-408.
[8] Zhao L,Dong Y,Chen G, et al. Extraction,purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum[J]. Carbohydrate Polymers,2010,46( 1) : 783-789.
[9] 胡皝,萧浪涛. 生物信息学在新基因全长cDNA 电子克隆中的应用[J]. 生物技术通讯, 2007( 4) : 93-96.
[10] Lukasz H,Roy B. In Silico Cloning of Novel Endothelia- Specific Genes[J]. Genome Research,2000,10: 1796 -1806.
[11] Xu J W,Xu Y N,Zhong J J. Production of individual ganoderic acids and expression of biosynthetic genes in liquid static and shaking cultures of Ganoderma lucidum[J]. Applied Microbiology and Biotechnology,2010,85:941-948.
[12] 魏香,曾宪纲,周海梦. 蛋白质结构中卷曲螺旋的研究进展[J]. 中国生物化学与分子生物学报, 2004,20( 5) : 565-571.
[13] Anthony J,William Tanner J,Paul M, et al. Interaction of14-3-3 with signaling proteins is mediated by the recognition of phosphoserine[J]. Cell,1996,84: 889-897.
[14] Chen Z,Fu H,Liu D, et al. A NaCl-regulated plant gene encoding a brain protein homology that activates ADP ribosyltransferaseand inhibits protein kinase C[J]. Plant Journal,1994,6: 729-740.
[15] Yan J,He C,Wang J, et al. Overexpression of the Arabidopsis 14-3-3 protein GF14λ in cotton leads to a ″staygreen″ phenotype and improves stress tolerance under moderate drought conditions[J]. Plant Cell Physiology, 2004,45( 8) : 1007-1014.
[16] Alsterfjord M,Sehnke P C,Arkell A, et al. Plasma membrane H ATPase and 14-3-3 isoforms of Arabidopsis leaves: Evidence for isoform specificity in the 14-3-3 / H ATPase interaction[J]. Plant & Cell Physiology, 2004,45( 9) : 1202-1210.
[17] Wurtele M, Jelich-Ottmann C,Wittinghofer A, et al. Structural view of a fungal toxin acting on a 14-3-3 regulatory complex[J]. EMBO Journal,2003,22( 5) : 987-994.
[18] Kinoshita T, Shimazaki K. Analysis of the phosphorylation level in guard-cell plasma membrane H+ -ATPase in response[J]. Plant & Cell Physiology,2001,42( 4) : 424-432.
[19] Pham C D,Yu Z,Sandrock B,et al. Ustilago maydis Rho1 and 14-3-3 Homologues Participate in Pathways Controlling Cell Separation and Cell Polarity[J]. Eukaryot Cell,2009,8( 7) : 977-989.
[20] Mielnichuk N,Pérez-Martín J. 14-3-3 regulates the G2 / M transition in the basidiomycete Ustilago maydis[J]. Fungal Genet Biol,2008,45( 8) : 1206-1215.
[21] Zhang W X,Zhong J J. Effect of oxygen concentration in gas phase on sporulation and individual ganoderic acids accumulation in liquid static culture of Ganoderma lucidum[J]. Journal of Bioscience and Bioengineering,2010,109: 37-40. |