| [1] |
Müller R. The impact of the rise in atmospheric nitrous oxide on stratospheric ozone[J]. Ambio, 2021, 50(1):35-39.doi: 10.1007/s13280-020-01428-3.
|
| [2] |
Tian H Q, Pan N Q, Thompson R L, et al. Global nitrous oxide budget(1980-2020)[J]. Earth System Science Data, 2024, 16(6):2543-2604.doi: 10.5194/essd-16-2543-2024.
URL
|
| [3] |
Cui X Q, Bo Y, Adalibieke W, Winiwarter W, Zhang X, Davidson E A, Sun Z X, Tian H Q, Smith P, Zhou F. The global potential for mitigating nitrous oxide emissions from croplands[J]. One Earth, 2024, 7(3):401-420.doi: 10.1016/j.oneear.2024.01.005.
URL
|
| [4] |
Feng R, Li Z H, Qi Z Z. China's anthropogenic N 2O emissions with analysis of economic costs and social benefits from reductions in 2022[J]. Journal of Environmental Management, 2024, 353:120234.doi: 10.1016/j.jenvman.2024.120234.
URL
|
| [5] |
曹文超, 宋贺, 王娅静, 覃伟, 郭景恒, 陈清, 王敬国. 农田土壤N 2O排放的关键过程及影响因素[J]. 植物营养与肥料学报, 2019, 25(10):1781-1798.doi: 10.11674/zwyf.18441.
|
|
Cao W C, Song H, Wang Y J, Qin W, Guo J H, Chen Q, Wang J G. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10):1781-1798.
|
| [6] |
Pandey C B, Kumar U, Kaviraj M, Minick K J, Mishra A K, Singh J S. DNRA:a short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems[J]. Science of the Total Environment, 2020, 738:139710.doi: 10.1016/j.scitotenv.2020.139710.
URL
|
| [7] |
Lazcano C, Zhu-Barker X, Decock C. Effects of organic fertilizers on the soil microorganisms responsible for N 2O emissions:a review[J]. Microorganisms, 2021, 9(5):983.doi: 10.3390/microorganisms9050983.
URL
|
| [8] |
Martikainen P J. Heterotrophic nitrification an eternal mystery in the nitrogen cycle[J]. Soil Biology and Biochemistry, 2022, 168:108611.doi: 10.1016/j.soilbio.2022.108611.
URL
|
| [9] |
Lin Y X, Hu H W, Ye G P, Fan J B, Ding W X, He Z Y, Zheng Y, He J Z. Ammonia-oxidizing bacteria play an important role in nitrification of acidic soils:a meta-analysis[J]. Geoderma, 2021, 404:115395.doi: 10.1016/j.geoderma.2021.115395.
URL
|
| [10] |
Zou W X, Lang M, Zhang L, Liu B, Chen X P. Ammonia-oxidizing bacteria rather than ammonia-oxidizing Archaea dominate nitrification in a nitrogen-fertilized calcareous soil[J]. Science of the Total Environment, 2022, 811:151402.doi: 10.1016/j.scitotenv.2021.151402.
URL
|
| [11] |
He Z Y, Shen J P, Zhang L M, Tian H J, Han B, Di H J, He J Z. DNA stable isotope probing revealed no incorporation of 13CO 2 into comammox Nitrospira but ammonia-oxidizing Archaea in a subtropical acid soil[J]. Journal of Soils and Sediments, 2020, 20(3):1297-1308.doi: 10.1007/s11368-019-02540-y.
|
| [12] |
Han B B, Yao Y Z, Liu B, Wang Y N, Su X X, Ma L H, Liu D Y, Niu S L, Chen X P, Li Z L. Relative importance between nitrification and denitrification to N 2O from a global perspective[J]. Global Change Biology, 2024, 30(1):e17082.doi: 10.1111/gcb.17082.
URL
|
| [13] |
Gao N, Yang B, Song Q L, Li X, Chen W Q, Shen Y F, Yue S C, Li S Q. Ammonia-oxidizing bacteria-driven autotrophic nitrification dominated nitrous oxide production in calcareous soil under long term plastic film mulching[J]. Geoderma, 2023, 435:116523.doi: 10.1016/j.geoderma.2023.116523.
URL
|
| [14] |
Liu B B, Frostegård Å, Bakken L R. Impaired reduction of N 2O to N 2 in acid soils is due to a posttranscriptional interference with the expression of nosZ[J]. mBio, 2014, 5(3):e01383-14.doi: 10.1128/mBio.01383-14.
|
| [15] |
Liu B B, Mørkved P T, Frostegård Å, Bakken L R. Denitrification gene pools,transcription and kinetics of NO,N 2O and N 2 production as affected by soil pH[J]. FEMS Microbiology Ecology, 2010, 72(3):407-417.doi: 10.1111/j.1574-6941.2010.00856.x.
|
| [16] |
Zheng Q, Ding J J, Lin W, Yao Z P, Li Q Z, Xu C Y, Zhuang S, Kou X Y, Li Y Z. The influence of soil acidification on N 2O emissions derived from fungal and bacterial denitrification using dual isotopocule mapping and acetylene inhibition[J]. Environmental Pollution, 2022, 303:119076.doi: 10.1016/j.envpol.2022.119076.
URL
|
| [17] |
Shaaban M, Hu R G, Wu Y P, Song L, Xu P. Soil pH management for mitigating N 2O emissions through nosZ(Clade Ⅰ and Ⅱ)gene abundance in rice paddy system[J]. Environmental Research, 2023, 225:115542.doi: 10.1016/j.envres.2023.115542.
URL
|
| [18] |
Qin H L, Wang D, Xing X Y, Tang Y F, Wei X M, Chen X B, Zhang W Z, Chen A L, Li L L, Liu Y, Zhu B L. A few key nirK- and nosZ-denitrifier taxa play a dominant role in moisture-enhanced N 2O emissions in acidic paddy soil[J]. Geoderma, 2021, 385:114917.doi: 10.1016/j.geoderma.2020.114917.
URL
|
| [19] |
Qin Y, Wang S Y, Wang X M, Liu C L, Zhu G B. Contribution of ammonium-induced nitrifier denitrification to N 2O in paddy fields[J]. Environmental Science & Technology, 2023, 57(7):2970-2980.doi: 10.1021/acs.est.2c06124.
URL
|
| [20] |
Caranto J D, Lancaster K M. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(31):8217-8222.doi: 10.1073/pnas.1704504114.
pmid: 28716929
|
| [21] |
Caranto J D, Vilbert A C, Lancaster K M. Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51):14704-14709.doi: 10.1073/pnas.1611051113.
pmid: 27856762
|
| [22] |
Lawton T J, Bowen K E, Sayavedra-Soto L A, Arp D J, Rosenzweig A C. Characterization of a nitrite reductase involved in nitrifier denitrification[J]. Journal of Biological Chemistry, 2013, 288(35):25575-25583.doi: 10.1074/jbc.M113.484543.
pmid: 23857587
|
| [23] |
Kool D M, Dolfing J, Wrage N, Van Groenigen J W. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil[J]. Soil Biology and Biochemistry, 2011, 43(1):174-178.doi: 10.1016/j.soilbio.2010.09.030.
URL
|
| [24] |
Zhu X, Burger M, Doane T A, Horwath W R. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N 2O and NO under low oxygen availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16):6328-6333.doi: 10.1073/pnas.1219993110.
pmid: 23576736
|
| [25] |
Deng D L, He G, Ding B J, Liu W Z, Yang Z J, Ma L. Denitrification dominates dissimilatory nitrate reduction across global natural ecosystems[J]. Global Change Biology, 2024, 30(3):e17256.doi: 10.1111/gcb.17256.
URL
|
| [26] |
Cheng Y, Elrys A S, Merwad A M, Zhang H M, Chen Z X, Zhang J B, Cai Z C, Müller C. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium[J]. Environmental Science & Technology, 2022, 56(6):3791-3800.doi: 10.1021/acs.est.1c07997.
URL
|
| [27] |
Tang Y J, Su X X, Wen T, McBratney A B, Zhou S, Huang F Y, Zhu Y G. Soil properties shape the heterogeneity of denitrification and N 2O emissions across large-scale flooded paddy soils[J]. Global Change Biology, 2024, 30(2):e17176.doi: 10.1111/gcb.17176.
URL
|
| [28] |
Aldossari N, Ishii S. Fungal denitrification revisited-recent advancements and future opportunities[J]. Soil Biology and Biochemistry, 2021, 157:108250.doi: 10.1016/j.soilbio.2021.108250.
URL
|
| [29] |
|
|
Wang Y J, Li L Y, Guo J H. Effect of pH value adjustments on chemical denitrification in forest soils[J]. Journal of Forest and Environment, 2022, 42(4):401-408.
|
| [30] |
|
|
Pan Y N, Wang Y J, Cao W C, Guo J H. A review of the influence of soil pH on nitrous oxide(N2O)emission[J]. Anhui Agricultural Science Bulletin, 2017, 23(15):19-24,99.
|
| [31] |
Rue K, Rusevova K, Biles C L, Huling S G. Abiotic hydroxylamine nitrification involving manganese-and iron-bearing minerals[J]. Science of the Total Environment, 2018, 644:567-575.doi: 10.1016/j.scitotenv.2018.06.397.
URL
|
| [32] |
Zuo J C, Hu H Q, Fu Q L, Zhu J, Xing Z Q. Biological-chemical comprehensive effects of goethite addition on nitrous oxide emissions in paddy soils[J]. Journal of Soils and Sediments, 2020, 20(10):3580-3590.doi: 10.1007/s11368-020-02685-1.
|
| [33] |
Zhu-Barker X, Cavazos A R, Ostrom N E, Horwath W R, Glass J B. The importance of abiotic reactions for nitrous oxide production[J]. Biogeochemistry, 2015, 126(3):251-267.doi: 10.1007/s10533-015-0166-4.
URL
|
| [34] |
Venterea R T. Nitrite-driven nitrous oxide production under aerobic soil conditions:kinetics and biochemical controls[J]. Global Change Biology, 2007, 13(8):1798-1809.doi: 10.1111/j.1365-2486.2007.01389.x.
|
| [35] |
|
|
Wang J G. Biological production and fluxes of N2O and NO in soil[J]. Research of Environmental Sciences, 1993, 6(5):47-51.
|
| [36] |
王娅静. 基于数据整合和实验模拟研究土壤pH对N2O和NO排放的影响[D]. 北京: 中国农业大学, 2018.
|
|
Wang Y J. Study on the impact of soil pH on N2O and NO emissions based on data integration and experimental simulation[D]. Beijing: China Agricultural University, 2018.
|
| [37] |
Wang M L, Hu R G, Ruser R, Schmidt C, Kappler A. Role of chemodenitrification for N 2O emissions from nitrate reduction in rice paddy soils[J]. ACS Earth and Space Chemistry, 2020, 4(1):122-132.doi: 10.1021/acsearthspacechem.9b00296.
URL
|
| [38] |
Heil J, Liu S R, Vereecken H, Brüggemann N. Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties[J]. Soil Biology and Biochemistry, 2015, 84:107-115.doi: 10.1016/j.soilbio.2015.02.022.
URL
|
| [39] |
Zhang Y, Zhao J, Huang X Q, Cheng Y, Cai Z C, Zhang J B, M ller C. Microbial pathways account for the pH effect on soil N 2O production[J]. European Journal of Soil Biology, 2021, 106:103337.doi: 10.1016/j.ejsobi.2021.103337.
URL
|
| [40] |
Frostegård Å, Vick S H W, Lim N Y N, Bakken L R, Shapleigh J P. Linking meta-omics to the kinetics of denitrification intermediates reveals pH-dependent causes of N 2O emissions and nitrite accumulation in soil[J]. The ISME Journal, 2022, 16(1):26-37.doi: 10.1038/s41396-021-01045-2.
URL
|
| [41] |
Shan J, Sanford R A, Chee-Sanford J, Ooi S K, Löffler F E, Konstantinidis K T, Yang W H. Beyond denitrification:the role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions[J]. Global Change Biology, 2021, 27(12):2669-2683.doi: 10.1111/gcb.15545.
pmid: 33547715
|
| [42] |
Heil J, Vereecken H, Brüggemann N. A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil[J]. European Journal of Soil Science, 2016, 67(1):23-39.doi: 10.1111/ejss.12306.
URL
|
| [43] |
|
|
Ma L, Li X B, Li B L, Yan X Y. Contributions of abiotic processes driven by hydroxylamine and nitrite to N2O emission in six different types of soils in China[J]. Acta Pedologica Sinica, 2016, 53(5):1181-1190.
|
| [44] |
|
|
Zuo J C. Effects and mechanisms of iron oxides on N2O emission during nitrification in paddy soil[D]. Wuhan: Huazhong Agricultural University, 2022.
|
| [45] |
Cui Q, Song C C, Wang X W, Shi F X, Yu X Y, Tan W W. Effects of warming on N 2O fluxes in a boreal peatland of permafrost region,Northeast China[J]. Science of the Total Environment, 2018, 616/617:427-434.doi: 10.1016/j.scitotenv.2017.10.246.
URL
|
| [46] |
Pan B B, Lam S K, Wang E L, Mosier A, Chen D L. New approach for predicting nitrification and its fraction of N 2O emissions in global terrestrial ecosystems[J]. Environmental Research Letters, 2021, 16(3):034053.doi: 10.1088/1748-9326/abe4f5.
|
| [47] |
Dai Z M, Yu M J, Chen H H, Zhao H C, Huang Y L, Su W Q, Xia F, Chang S X, Brookes P C, Dahlgren R A, Xu J M. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization,nitrification and denitrification across global terrestrial ecosystems[J]. Global Change Biology, 2020, 26(9):5267-5276.doi: 10.1111/gcb.15211.
URL
|
| [48] |
Liu R, Hayden H L, Suter H, Hu H W, Lam S K, He J Z, Mele P M, Chen D L. The effect of temperature and moisture on the source of N 2O and contributions from ammonia oxidizers in an agricultural soil[J]. Biology and Fertility of Soils, 2017, 53(1):141-152.doi: 10.1007/s00374-016-1167-8.
URL
|
| [49] |
Zhang X, Jiao Y, Wang B X, Xu X T, Dong Y B, Xiong Z Q. Biochar amendments and climate warming affected nitrification associated N 2O and NO production in a vegetable field[J]. Journal of Environmental Management, 2023, 330:117178.doi: 10.1016/j.jenvman.2022.117178.
URL
|
| [50] |
Lai T V, Ryder M H, Rathjen J R, Bolan N S, Croxford A E, Denton M D. Dissimilatory nitrate reduction to ammonium increased with rising temperature[J]. Biology and Fertility of Soils, 2021, 57(3):363-372.doi: 10.1007/s00374-020-01529-x.
|
| [51] |
|
|
Zhao W Q. Iron oxidation coupled with nitrate reduction process in red paddy soil and its N2O emission effect[D]. Guangzhou: South China Agricultural University, 2023.
|
| [52] |
Zhang Y, Wang J, Dai S Y, Sun Y Q, Chen J, Cai Z C, Zhang J B, Müller C. Temperature effects on N 2O production pathways in temperate forest soils[J]. Science of the Total Environment, 2019, 691:1127-1136.doi: 10.1016/j.scitotenv.2019.07.208.
|
| [53] |
Liu L T, Hu C S, Yang P P, Ju Z Q, Olesen J E, Tang J W. Experimental warming-driven soil drying reduced N 2O emissions from fertilized crop rotations of winter wheat soybean/fallow,2009-2014[J]. Agriculture,Ecosystems & Environment, 2016, 219:71-82.doi: 10.1016/j.agee.2015.12.013.
|
| [54] |
Wang H, Yan Z F, Ju X T, Song X T, Zhang J B, Li S L, Zhu-Barker X. Quantifying nitrous oxide production rates from nitrification and denitrification under various moisture conditions in agricultural soils:laboratory study and literature synthesis[J]. Frontiers in Microbiology, 2022, 13:1110151.doi: 10.3389/fmicb.2022.1110151.
URL
|
| [55] |
Liu H S, Zheng X Z, Li Y F, Yu J H, Ding H, Sveen T R, Zhang Y S. Soil moisture determines nitrous oxide emission and uptake[J]. Science of the Total Environment, 2022, 822:153566.doi: 10.1016/j.scitotenv.2022.153566.
URL
|
| [56] |
Qin H L, Xing X Y, Tang Y F, Zhu B L, Wei X M, Chen X B, Liu Y. Soil moisture and activity of nitrite-and nitrous oxide-reducing microbes enhanced nitrous oxide emissions in fallow paddy soils[J]. Biology and Fertility of Soils, 2020, 56(1):53-67.doi: 10.1007/s00374-019-01403-5.
|
| [57] |
Slimani I, Zhu-Barker X, Lazicki P, Horwath W. Reviews and syntheses:iron a driver of nitrogen bioavailability in soils[J]. Biogeosciences, 2023, 20(18):3873-3894.doi: 10.5194/bg-20-3873-2023.
URL
|
| [58] |
Chen C M, Dong Y J, Thompson A. Electron transfer,atom exchange,and transformation of iron minerals in soils:the influence of soil organic matter[J]. Environmental Science & Technology, 2023, 57(29):10696-10707.doi: 10.1021/acs.est.3c01876.
URL
|
| [59] |
Dong H L, Zeng Q, Sheng Y Z, Chen C M, Yu G H, Kappler A. Coupled iron cycling and organic matter transformation across redox interfaces[J]. Nature Reviews Earth & Environment, 2023, 4(9):659-673.doi: 10.1038/s43017-023-00470-5.
|
| [60] |
Wang M L, Hu R G, Zhao J S, Kuzyakov Y, Liu S R. Iron oxidation affects nitrous oxide emissions via donating electrons to denitrification in paddy soils[J]. Geoderma, 2016, 271:173-180.doi: 10.1016/j.geoderma.2016.02.022.
URL
|
| [61] |
Zhang L, Jiang M H, Ding K R, Zhou S G. Iron oxides affect denitrifying bacterial communities with the nirS and nirK genes and potential N 2O emission rates from paddy soil[J]. European Journal of Soil Biology, 2019, 93:103093.doi: 10.1016/j.ejsobi.2019.103093.
URL
|
| [62] |
Zuo J C, Fu Q L, Hu H Q, Zhu J. Goethite promoted N 2O emissions via increasing autotrophic nitrification dominated by ammonia oxidizing bacteria in paddy soils[J]. Applied Soil Ecology, 2024, 201:105479.doi: 10.1016/j.apsoil.2024.105479.
URL
|
| [63] |
Chen D D, Cheng K, Liu T X, Chen G J, Kappler A, Li X M, Zeng R J, Yang Y, Yue F J, Hu S W, Cao F, Li F B. Novel insight into microbially mediated nitrate-reducing Fe(Ⅱ)oxidation by Acidovorax sp.strain BoFeN1 using dual N-O isotope fractionation[J]. Environmental Science & Technology, 2023, 57(33):12546-12555.doi: 10.1021/acs.est.3c02329.
URL
|
| [64] |
Jones L C, Peters B, Lezama Pacheco J S, Casciotti K L, Fendorf S. Stable isotopes and iron oxide mineral products as markers of chemodenitrification[J]. Environmental Science & Technology, 2015, 49(6):3444-3452.doi: 10.1021/es504862x.
URL
|
| [65] |
Rousk J, Frey S D. Revisiting the hypothesis that fungal-to-bacterial dominance characterizes turnover of soil organic matter and nutrients[J]. Ecological Monographs, 2015, 85(3):457-472.doi: 10.1890/14-1796.1.
URL
|
| [66] |
Curtright A J, Tiemann L K. Chemical identity of carbon substrates drives differences in denitrification and N 2O reduction within agricultural soils[J]. Soil Biology and Biochemistry, 2023, 184:109078.doi: 10.1016/j.soilbio.2023.109078.
URL
|
| [67] |
|
|
Zhang N, Miao S J, Qiao Y F, Chen Z M, Ding W X. N2O emissions from black soils in Northeast China[J]. Acta Pedologica Sinica, 2022, 59(4):899-909.
|
| [68] |
|
|
Li B B, Wu L F. Soil greenhouse gases emission in response to the C/N[J]. Journal of Agro-Environment Science, 2018, 37(9):2067-2078.
|
| [69] |
Li X B, Li Z A, Zhang X D, Xia L L, Zhang W X, Ma Q Q, He H B. Disentangling immobilization of nitrate by fungi and bacteria in soil to plant residue amendment[J]. Geoderma, 2020, 374:114450.doi: 10.1016/j.geoderma.2020.114450.
URL
|
| [70] |
Duan T Z, Zhao J T, Zhu L Z. Insights into CO 2 and N 2O emissions driven by applying biochar and nitrogen fertilizers in upland soil[J]. Science of the Total Environment, 2024, 929:172439.doi: 10.1016/j.scitotenv.2024.172439.
URL
|
| [71] |
Yang P P, Reijneveld A, Lerink P, et al. Within-field spatial variations in subsoil bulk density related to crop yield and potential CO 2 and N 2O emissions[J]. Catena, 2022, 213:106156. doi: 10.1016/j.catena.2022.106156.
URL
|
| [72] |
|
|
Li Y, Wang G L, Song X T, Ju X T. Effects of soil bulk-density on soil moisture and nitrous oxide emissions[J]. Journal of Agro-Environment Science, 2025, 44(4):1126-1134.
|
| [73] |
Tian H Q, Xu R T, Canadell J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020, 586(7828):248-256.doi: 10.1038/s41586-020-2780-0.
|
| [74] |
He Z J, Ding B X, Pei S Y, Cao H X, Liang J P, Li Z J. The impact of organic fertilizer replacement on greenhouse gas emissions and its influencing factors[J]. Science of the Total Environment, 2023, 905:166917.doi: 10.1016/j.scitotenv.2023.166917.
URL
|
| [75] |
Gao H Z, Xi Y J, Wu X P, Pei X X, Liang G P, Bai J, Song X J, Zhang M L, Liu X T, Han Z X, Zhao G, Li S P. Partial substitution of manure reduces nitrous oxide emission with maintained yield in a winter wheat crop[J]. Journal of Environmental Management, 2023, 326:116794.doi: 10.1016/j.jenvman.2022.116794.
URL
|
| [76] |
Shakoor A, Shahzad S M, Chatterjee N, Arif M S, Farooq T H, Altaf M M, Tufail M A, Dar A A, Mehmood T. Nitrous oxide emission from agricultural soils:application of animal manure or biochar a global meta-analysis[J]. Journal of Environmental Management, 2021, 285:112170.doi: 10.1016/j.jenvman.2021.112170.
URL
|
| [77] |
Lan T, Li M X, Han Y, Deng O P, Tang X Y, Luo L, Zeng J, Chen G D, Yuan S, Wang C Q, Gao X S. How are annual CH 4,N 2O,and NO emissions from rice wheat system affected by nitrogen fertilizer rate and type[J]. Applied Soil Ecology, 2020, 150:103469.doi: 10.1016/j.apsoil.2019.103469.
URL
|
| [78] |
Guo X, Ren H, Ren B Z, Zhang J W, Liu P, Shah S, Zhao B. Long-term application of controlled-release urea reduced ammonia volatilization,raising the risk of N 2O emissions and improved summer maize yield[J]. Field Crops Research, 2024, 306:109227.doi: 10.1016/j.fcr.2023.109227.
URL
|
| [79] |
Tierling J, Kuhlmann H. Emissions of nitrous oxide(N 2O)affected by pH-related nitrite accumulation during nitrification of N fertilizers[J]. Geoderma, 2018, 310:12-21.doi: 10.1016/j.geoderma.2017.08.040.
URL
|
| [80] |
Wang L, Yang K, Gao C C, Zhu L Z. Effect and mechanism of biochar on CO 2 and N 2O emissions under different nitrogen fertilization gradient from an acidic soil[J]. Science of the Total Environment, 2020, 747:141265.doi: 10.1016/j.scitotenv.2020.141265.
URL
|
| [81] |
Pandey A, Suter H, He J Z, Hu H W, Chen D L. Dissimilatory nitrate reduction to ammonium dominates nitrate reduction in long-term low nitrogen fertilized rice paddies[J]. Soil Biology and Biochemistry, 2019, 131:149-156.doi: 10.1016/j.soilbio.2019.01.007.
URL
|
| [82] |
Xu C, Zhu H S, Wang J, Ji C, Liu Y B, Chen D Y, Zhang H, Wang J D, Zhang Y C. Fertilizer N triggers native soil N-derived N 2O emissions by priming gross N mineralization[J]. Soil Biology and Biochemistry, 2023, 178:108961.doi: 10.1016/j.soilbio.2023.108961.
URL
|
| [83] |
Tarin M W K, Khaliq M A, Fan L L, Xie D J, Tayyab M, Chen L Y, He T Y, Rong J D, Zheng Y S. Divergent consequences of different biochar amendments on carbon dioxide(CO 2)and nitrous oxide(N 2O)emissions from the red soil[J]. Science of the Total Environment, 2021, 754:141935.doi: 10.1016/j.scitotenv.2020.141935.
URL
|
| [84] |
Kaur N, Kieffer C, Ren W, Hui D F. How much is soil nitrous oxide emission reduced with biochar application? An evaluation of meta-analyses[J]. GCB Bioenergy, 2023, 15(1):24-37.doi: 10.1111/gcbb.13003.
URL
|
| [85] |
Yuan D, Wang G Q, Hu C S, Zhou S G, Clough T J, Wrage-Mönnig N, Luo J F, Qin S P. Electron shuttle potential of biochar promotes dissimilatory nitrate reduction to ammonium in paddy soil[J]. Soil Biology and Biochemistry, 2022, 172:108760.doi: 10.1016/j.soilbio.2022.108760.
URL
|
| [86] |
Liu X X, Jiang C C, Qin Y, Wang C, Wang J L, Zheng X X, Maihaiti M, Zhang X P, Ma S L, Xu S J, Zhuang X L. Production of biochar from squeezed liquid of fruit and vegetable waste:impacts on soil N 2O emission and microbial community[J]. Environmental Research, 2023, 239:117245.doi: 10.1016/j.envres.2023.117245.
URL
|
| [87] |
Ji C, Han Z Q, Zheng F W, Wu S, Wang J Y, Wang J D, Zhang H, Zhang Y C, Liu S W, Li S Q, Zou J W. Biochar reduced soil nitrous oxide emissions through suppressing fungal denitrification and affecting fungal community assembly in a subtropical tea plantation[J]. Agriculture, Ecosystems & Environment, 2022, 326:107784.doi: 10.1016/j.agee.2021.107784.
|
| [88] |
Wu P, Xie M H, Clough T J, Yuan D, Wu S H, He X D, Hu C S, Zhou S G, Qin S P. Biochar-derived persistent free radicals and reactive oxygen species reduce the potential of biochar to mitigate soil N 2O emissions by inhibiting nosZ[J]. Soil Biology and Biochemistry, 2023, 178:108970.doi: 10.1016/j.soilbio.2023.108970.
URL
|
| [89] |
Munera-Echeverri J L, Martinsen V, Dörsch P, Obia A, Mulder J. Pigeon pea biochar addition in tropical arenosol under maize increases gross nitrification rate without an effect on nitrous oxide emission[J]. Plant and Soil, 2022, 474(1):195-212.doi: 10.1007/s11104-022-05325-4.
|
| [90] |
Liao X L, Mao S X, Shan Y X, Gao W R, Wang S S, Malghani S. Impact of iron-modified biochars on soil nitrous oxide emissions:variations with iron salts and soil fertility[J]. Journal of Environmental Management, 2024, 356:120571.doi: 10.1016/j.jenvman.2024.120571.
URL
|
| [91] |
Yuan D, Wu P, Yuan J, Jia Z F, Hu C S, Clough T J, Wrage Mönnig N, Luo J F, Tang J H, Qin S P. Loading of redox-active metal Fe largely enhances the capacity of biochar to mitigate soil N 2O emissions by promoting complete denitrification[J]. Biology and Fertility of Soils, 2025, 61(3):681-693.doi: 10.1007/s00374-024-01823-y.
|
| [92] |
Zhang Y H, Huang M Y, Ren H J, Shi Y, Qian S Y, Wang Y X, Zhang J B, Müller C, Li S Q, Sardans J, Peñuelas J, Zou J W. Nitrous oxide emissions in Fe-modified biochar amended paddy soil are controlled by autotrophic nitrification[J]. Geoderma, 2024, 446:116917.doi: 10.1016/j.geoderma.2024.116917.
URL
|
| [93] |
Du Y L, Guo X Y, Li J X, Liu Y K, Luo J P, Liang Y C, Li T Q. Elevated carbon dioxide stimulates nitrous oxide emission in agricultural soils:a global meta-analysis[J]. Pedosphere, 2022, 32(1):3-14.doi: 10.1016/S1002-0160(21)60057-7.
URL
|
| [94] |
Liu Y, Gao K, Guo Z H, Liu X Y, Bian R J, Sun B B, Li J, Chen J H. An antagonistic effect of elevated CO 2 and warming on soil N 2O emissions related to nitrifier and denitrifier communities in a Chinese wheat field[J]. Plant and Soil, 2022, 470(1):97-110.doi: 10.1007/s11104-021-05053-1.
|
| [95] |
Dijkstra F A, Prior S A, Runion G B, Torbert H A, Tian H Q, Lu C Q, Venterea R T. Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes:evidence from field experiments[J]. Frontiers in Ecology and the Environment, 2012, 10(10):520-527.doi: 10.1890/120059.
URL
|
| [96] |
Qiu Y P, Jiang Y, Guo L J, Zhang L, Burkey K O, Zobel R W, Reberg-Horton S C, Shew H D, Hu S J. Shifts in the composition and activities of denitrifiers dominate CO 2 stimulation of N 2O emissions[J]. Environmental Science & Technology, 2019, 53(19):11204-11213.doi: 10.1021/acs.est.9b02983.
URL
|
| [97] |
Usyskin-Tonne A, Hadar Y, Yermiyahu U, Minz D. Elevated CO 2 has a significant impact on denitrifying bacterial community in wheat roots[J]. Soil Biology and Biochemistry, 2020, 142:107697.doi: 10.1016/j.soilbio.2019.107697.
URL
|
| [98] |
Wu Z R, Wang Y Y, Liu C, Yin N, Hu Z H, Shen L D, Islam A R M T, Wei Z W, Chen S T. Characteristics of soil N 2O emission and N 2O-producing microbial communities in paddy fields under elevated CO 2 concentrations[J]. Environmental Pollution, 2023, 318:120872.doi: 10.1016/j.envpol.2022.120872.
URL
|
| [99] |
Qiu Z J, Yu H Y, Zhu C W, Shen W S. NosZ I carrying microorganisms determine N 2O emissions from the subtropical paddy field under elevated CO 2 and strongly CO 2-responsive cultivar[J]. Science of the Total Environment, 2024, 935:173255.doi: 10.1016/j.scitotenv.2024.173255.
URL
|