[1] |
倪康, 廖万有, 伊晓云, 牛司耘, 马立锋, 石元值, 张群峰, 刘美雅, 阮建云. 我国茶园施肥现状与减施潜力分析[J]. 植物营养与肥料学报, 2019, 25(3):421-432.doi: 10.11674/zwyf.18078.
doi: 10.11674/zwyf.18078
|
|
Ni K, Liao W Y, Yi X Y, Niu S Y, Ma L F, Shi Y Z, Zhang Q F, Liu M Y, Ruan J Y. Fertilization status and reduction potential in tea gardens of China[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(3):421-432.
|
[2] |
金桂梅, 李昱航, 郑向群, 梁涛, 毛妍婷, 陈安强, 续勇波, 玉总, 平凤超, 雷宝坤. 不同土壤管理与施肥模式对茶园土壤环境及茶叶产量的影响[J]. 土壤通报, 2020, 51(1):152-158.doi: 10.19336/j.cnki.trtb.2020.01.20.
doi: 10.19336/j.cnki.trtb.2020.01.20
|
|
Jin G M, Li Y H, Zheng X Q, Liang T, Mao Y T, Chen A Q, Xu Y B, Yu Z, Ping F C, Lei B K. Effects of different soil management and fertilization patterns on soil conditions in tea garden and tea yield[J]. Chinese Journal of Soil Science, 2020, 51(1):152-158.
|
[3] |
doi: 10.11654/jaes.2016.04.027
|
|
Wang F, Chen Y Z, Wu Z D, Jiang F Y, Weng B Q, You Z M. Ammonia volatilization and its influencing factors in tea garden soils[J]. Journal of Agro-Environment Science, 2016, 35(4):808-816.
|
[4] |
doi: 10.3969/j.issn.1007-4872.2020.01.002
|
|
Niu S Y, Ni K, Yi X Y, Shi Y Z, Ma L F, Ruan J Y. Research advances on pathway of nitrogen loss in tea plantation soil[J]. Tea Science and Technology, 2020, 61(1):1-5.
|
[5] |
doi: 10.3969/j.issn.1000-3150.2023.01.008
|
|
Yan L L, Li Z C, Yan M J, Shu C, Shi N, Long P. Effects of chemical fertilizer replaced by organic fertilizer on tea yield and economic benefits[J]. China Tea, 2023, 45(1):42-49.
|
[6] |
doi: 10.3969/j.issn.1009-525X.2022.03.006
|
|
Li W, Liu H Y, Jiang T, Xiang F, Zhou L Y. Effects of combing organic fertilizer on tea quality and soil nutrients in tea garden[J]. Tea Communication, 2022, 49(3):317-322.
|
[7] |
张峻伟, 王志文, 季凌飞, 郭俊杰, 凌宁, 郭世伟. 有机肥替代化肥对不同生产模式茶园茶叶生产的影响[J]. 南京农业大学学报, 2021, 44(1):127-135.doi: 10.7685/jnau.202002019.
doi: 10.7685/jnau.202002019
|
|
Zhang J W, Wang Z W, Ji L F, Guo J J, Ling N, Guo S W. Effects of organic fertilizers instead of chemical fertilizers on tea production in tea gardens with different production modes[J]. Journal of Nanjing Agricultural University, 2021, 44(1):127-135.
|
[8] |
doi: 10.26949/d.cnki.gblyu.2020.000723
|
|
Guo Z F. Study on nitrogen accumulation and leaching characteristics of soil aggregates in typical farmland in Northern China[D]. Beijing: Beijing Forestry University, 2020.
|
[9] |
doi: 10.3969/j.issn.1007-4872.2014.04.004
|
|
Wu Z D, You Z M, Wang F, Jiang F Y, Zhu L G. Effect of nitrogen application rate on the growth and leaf photosynthetic characteristics of tea[J]. Acta Tea Sinica, 2014(4):16-20.
|
[10] |
doi: 10.11975/j.issn.1002-6819.2019.24.012
|
|
Pang Y L, Wang F X, Huang Z J, Li B, Hu F D, Xia Y S. Improving yield and quality of autumn tea with drip irrigation under appropriate nitrogen and potassium fertilization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24):98-103.
|
[11] |
doi: 10.13227/j.hjkx.2015.09.037
|
|
Hu N, Ma Z M, Lan J C, Wu Y C, Chen G Q, Fu W L, Zhi L, Wang W J. Nitrogen fraction distributions and impacts on soil nitrogen mineralization in different vegetation restorations of Karst rocky desertification[J]. Environmental Science, 2015, 36(9):3411-3421.
|
[12] |
Celik I, Gunal H, Budak M, Akpinar C. Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid mediterranean soil conditions[J]. Geoderma, 2010, 160(2):236-243.doi: 10.1016/j.geoderma.2010.09.028.
doi: 10.1016/j.geoderma.2010.09.028
URL
|
[13] |
Christensen B T, Olesen J E. Nitrogen mineralization potential of organomineral size separates from soils with annual straw incorporation[J]. European Journal of Soil Science, 1998, 49(1):25-36.doi: 10.1046/j.1365-2389.1998.00130.x.
doi: 10.1046/j.1365-2389.1998.00130.x
URL
|
[14] |
doi: 10.3864/j.issn.0578-1752.2000-33-5-67-73
|
|
Xu Y C, Shen Q R. Influence of long-term application of manure on the contents and distribution of organic C,total N and P in soil particle-sizes[J]. Scientia Agricultura Sinica, 2000, 33(5):65-71.
|
[15] |
荣勤雷, 李若楠, 黄绍文, 周春火, 唐继伟, 王丽英, 张彦才. 不同施肥模式下设施菜田土壤团聚体养分和微生物量特征[J]. 植物营养与肥料学报, 2019, 25(7):1084-1096.doi: 10.11674/zwyf.18472.
doi: 10.11674/zwyf.18472
|
|
Rong Q L, Li R N, Huang S W, Zhou C H, Tang J W, Wang L Y, Zhang Y C. Characteristics of nutrients and microbial biomass in soil aggregates under different fertilization modes in greenhouse vegetable production[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7):1084-1096.
|
[16] |
杨阳. 秸秆还田条件下休耕轮作对玉米农田土壤团聚体及其养分的影响[D]. 哈尔滨: 中国科学院大学, 2019.
|
|
Yang Y. Effects of fallow rotation on soil aggregates and their nutrients in maize field under the condition of straw returning to field[D]. Harbin: University of Chinese Acadeny of Sciences, 2019.
|
[17] |
doi: 10.3969/j.issn.1000-0941.2010.12.012
|
|
Wang J Y, Gong W, Hu T X. Soil humus and aggregate carbon and nitrogen in slope farmland with different de-farming patterns in southern Sichuan Province[J]. Journal of Soil and Water Conservation, 2012, 26(2):155-160,164.
|
[18] |
doi: 10.3321/j.issn:0578-1752.2007.02.013
|
|
Liu Y, Li S Q, Li S X. Distribution of nitrogen pools in different sizes of loess plateau soil aggregates[J]. Scientia Agricultura Sinica, 2007, 40(2):304-313.
|
[19] |
doi: 10.13870/j.cnki.stbcxb.2022.01.034
|
|
Yu Z H, Zheng Z C, Wang Y D, Li T X. Distribution of mineral nitrogen in soil aggregates of tea-planting hilly region in Western Sichuan[J]. Journal of Soil and Water Conservation, 2022, 36(1):263-267.
|
[20] |
王晟强. 植茶年限对土壤团聚体养分含量变化的影响[D]. 雅安: 四川农业大学, 2014.
|
|
Wang S Q. Effect of tea planting years on nutrient content of soil aggregates[D]. Yaan: Sichuan Agricultural University, 2014.
|
[21] |
doi: 10.7666/d.y1175005
|
|
Wang G Q. Effects of land use change on soil organic carbon and soil aggregate light carbon[D]. Fuzhou: Fujian Agriculture and Forestry University, 2007.
|
[22] |
黄容. 有机替代对菜园土壤温室气体排放和氮转化的影响[D]. 重庆: 西南大学, 2019.
|
|
Huang R. Effects of organic substitution on greenhouse gas emission and nitrogen transformation in vegetable garden soil[D]. Chongqing: Southwest University, 2019.
|
[23] |
中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978.
|
|
Institute of Soil Science,Chinese Academy of Sciences. The soil physical and chemical analysis manual[M]. Shanghai: Shanghai Science and Technology Press, 1978.
|
[24] |
doi: 10.3321/j.issn:1000-0933.2006.02.008
|
|
Qiu L P, Zhang X C, Zhang J A. Distribution of nutrients and enzymes in Loess Plateau soil aggregates after long-term fertilization[J]. Acta Ecologica Sinica, 2006, 26(2):364-372.
|
[25] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
|
|
Lu R K. Analysis methods of soil agrochemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.
|
[26] |
胡天睿, 蔡泽江, 王伯仁, 张璐, 文石林, 朱建强, 徐明岗. 有机肥替代化学氮肥提升红壤抗酸化能力[J]. 植物营养与肥料学报, 2022, 28(11):2052-2059.doi: 10.11674/zwyf.2022130.
doi: 10.11674/zwyf.2022130
|
|
Hu T R, Cai Z J, Wang B R, Zhang L, Wen S L, Zhu J Q, Xu M G. Swine manure as part of the total N source improves red soil resistance to acidification[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(11):2052-2059.
|
[27] |
黄尚书, 孙永明, 江新凤, 吴艳, 林小兵, 何绍浪, 余跑兰, 熊文, 雷礼文. 有机肥全量替代化肥对茶叶产量和品质、土壤养分及氮素利用的影响[J]. 华北农学报, 2021, 36(4):163-171.doi: 10.7668/hbnxb.20192176.
doi: 10.7668/hbnxb.20192176
|
|
Huang S S, Sun Y M, Jiang X F, Wu Y, Lin X B, He S L, Yu P L, Xiong W, Lei L W. Effects of total replacement of chemical fertilizer with organic fertilizer on yield and quality of tea,soil nutrients and nitrogen utilization[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(4):163-171.
doi: 10.7668/hbnxb.20192176
|
[28] |
doi: 10.13292/j.1000-4890.201809.003
|
|
Tian S X, Feng P, Yang S, Liu H Y, Ye J, Li H, Jiang Y, Zhang Y G. Soil cation exchange capacity and its main impact factors in the humic layer of broadleaved Korean pine forest in northeast China[J]. Chinese Journal of Ecology, 2018, 37(9):2549-2558.
|
[29] |
doi: 10.16258/j.cnki.1674-5906.2019.03.008
|
|
Wen J, Wang X L, Wang Y L. Distribution characteristics and mechanism discussion of soil cation exchange capacity and exchangeable based cations of alpine grassland in the source region of Yangtze River[J]. Ecology and Environment Sciences, 2019, 28(3):488-497.
doi: 10.16258/j.cnki.1674-5906.2019.03.008
|
[30] |
doi: 10.1111/j.1365-2389.1982.tb01755.x
URL
|
[31] |
doi: 10.3321/j.issn:1000-0933.2003.10.027
|
|
Peng X H, Zhang B, Zhao Q G. Effect of soil organic carbon on aggregate stability after vegetative restoration on severely eroded red soil[J]. Acta Ecologica Sinica, 2003, 23(10):2176-2183.
|
[32] |
doi: 10.5846/stxb201611112299
|
|
Qian J, Zhang L P, Wang W Y. The relationship between soil aggregates and eroded sediments from sloping vegetated red soils of South China[J]. Acta Ecologica Sinica, 2018, 38(5):1590-1599.
|
[33] |
doi: 10.13870/j.cnki.stbcxb.2016.06.039
|
|
Ou X L, Chen Z B, Jiang C, Chen Z Q, Ren T J, Chen H B. Effect of vegetation restoration on nutrient distribution within aggregate of subtropical eroded red soils[J]. Journal of Soil and Water Conservation, 2016, 30(6):230-238.
|
[34] |
doi: 10.3321/j.issn:1009-2242.2008.02.030
|
|
Zheng Z C, He S Q, Wang Y D, Li T X, Zhang X Z, Xu Y. Distrbution feature of soil nutrients in aggregate under different land use[J]. Journal of Soil and Water Conservation, 2010, 24(3):170-174.
|
[35] |
doi: 10.27163/d.cnki.gjlnu.2021.000339
|
|
Li Y L. Study on nitrogen transformation and acidity change characteristics of chernozem driven by exogenous nitrogen[D]. Changchun: Jilin Agricultural University, 2021.
|
[36] |
Wang J G, Wei Y, Yu B, Li Z X, Ma R M. Estimating the influence of related soil properties on macro-and micro-aggregate stability in ultisols of south-central China[J]. CATENA, 2016, 137:545-553.doi: 10.1016/j.catena.2015.11.001.
doi: 10.1016/j.catena.2015.11.001
URL
|
[37] |
Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation:A mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14):2099-2103.doi: 10.1016/S0038-0717(00)00179-6.
doi: 10.1016/S0038-0717(00)00179-6
URL
|