[1] Keller M,Viret O,Cole F M. Botrytis cinerea infection in grape flowers:Defense reaction,latency,and disease expression[J].Phytopathology,2003,93(3):316-322.
[2] Zhu B,Zhou Q,Xie G,et al.Interkingdom gene transfer may contribute to the evolution of phytopathogenicity in Botrytis cinerea[J].Evolutionary Bioinformatics Online,2012,8(7):105-117.
[3] Shah P,Powell A L,Orlando R,et al.Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea[J].Journal of Proteome Research,2012,11(4):2178-2192.
[4] Espino J J,Gutierrez-Sanchez G,Brito N,et al.The Botrytis cinerea early secretome[J].Proteomics,2010,10(16):3020-3034.
[5] Robles L M,Wampole J S,Christians M J,et al. Arabidopsis enhanced ethylene response 4 encodes an EIN3-interacting TFIID transcription factor required for proper ethylene response,including ERF1 induction[J].Journal of Experimental Botany,2007,58(10):2627-2639.
[6] Canonne J,Marino D,Jauneau A,et al.The Xanthomonas type Ⅲ effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense[J].Plant Cell,2011,23(9):3498-3511.
[7] Li L,Yu X,Thompson A,et al. Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression[J].The Plant Journal,2009,58(2):275-286.
[8] Veronese P,Chen X,Bluhm B,et al.The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection[J].The Plant Journal,2004,40(4):558-574.
[9] Denby K J,Kumar P,Kliebenstein D J.Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana[J].The Plant Journal,2004,38(3):473-486.
[10] Veronese P,Nakagami H,Bluhm B,et al.The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens[J].Plant Cell,2006,18(1):257-273.
[11] Jihong X,Qiaoyu W,Congcong H,et al. T1N6-22 gene is required for biotic and abiotic stress responses in Arabidopsis[J].Russian Journal of Genetics,2012,48(12):1191-1198.
[12] Ziqiang L,Yan Z,Juan G,etal.Molecular and reverse genetic characterization of NUCLEOSOMEASSEMBLY PROTEIN1(NAP1)genes unravels their function in transcription and nucleotide excision repair in Arabidopsis thaliana[J].The Plant Journal,2009,59(59),27-38.
[13] Harald H O,Jennifer L A,Heather M W,et al.Organisation of the pantothenate(vitamin B5)biosynthesis pathway in higher plants[J].The Plant Journal,2004,37(1):61-72.
[14] He X J,Mu R L,Cao W H,et al.AtNAC2,a transcription factor downstream of ethylene and auxin signaling pathways,is involved in salt stress response and lateral root development[J].The Plant Journal,2005,44(6):903-916.
[15] Kerry A L,Jessica R F,Jeremy M E,et al.Peroxisomal metabolism of propionic acid and isobutyric acid in plants[J].The Journal of Biological Chemistry,2007,282(34):24980-24989.
[16] Jia Y L,MeAdams S A,Bryan G T,et al.Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J].The EMBO Journal,2000,19(15):4004-4014.
[17] Kim J H,Nguyen N H,Jeong C Y,et al.Loss of the R2R3 MYB, AtMyb73,causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsi s[J].Journal of Plant Physiology,2013,170(16):1461-1465.
[18] 樊锦涛,贾娇,蒋琛茜,等.拟南芥转录因子AtMYB73转录活性区域分析及互作蛋白的筛选[J].中国农业科学,2014,47(23):4754-4762.
[19] 王加峰,刘浩,王慧,等.水稻NBS-LRR类抗稻瘟病蛋白Pik-h的互作蛋白筛选[J].中国农业科学,2016,49(3):482-490.
[20] 孙海桃,徐兆师,侯建华,等.小麦TaDREB6转录因子互作蛋白的筛选[J].中国农业科学,2011,44(22):4740-4747.
[21] Vander E S,Verhagen B W,Van D R,et al.MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis[J].Plant Physiology,2008,146(3):1293-1304.
[22] García M J,Suárez V,Romera F J,et al.A new model involving ethylene,nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants[J].Plant Physiology and Biochemistry,2011,49(5):537-544.
[23] Wu Q,Wang X Z,Tang Y Y,et al.Molecular cloning,genomic organization and functional analysis of the ribosomal protein L4/L1(RPL4)gene from from Arachishypogaea[J].Canadian Journal of Plant Science,2014,94(1):85-97.
[24] 王立丰,王纪坤,安锋,等.巴西橡胶树核糖体蛋白HbRPL14基因逆境响应机制[J].西南林业大学学报,2016,36(2):67-77.
[25] 曹广英,吴琪,唐月异,等.花生核糖体蛋白L29-1(RPL29-1)基因克隆表达分析及载体构建[J].分子植物育种,2016,14(7):1730-1736.
[26] Kim K Y,Park S W,Chung Y S,et al.Molecular cloning of low-temperature-inducible ribosomal proteins from soybean[J].Gene Note,2004:1153-1155. |