[1] Mouncey N J, Otani H, Udwary D, Yoshikuni Y. New voyages to explore the natural product galaxy[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(3-4):273-279.doi:10.1007/s10295-018-02122-w. [2] Zhou J, Liu K, Xin F X, Ma J F, Xu N, Zhang W M, Fang Y, Jiang M, Dong W L. Recent insights into the microbial catabolism of aryloxyphenoxy-propionate herbicides:microbial resources, metabolic pathways and catabolic enzymes[J]. World Journal of Microbiology and Biotechnology, 2018, 34(8):117.doi:10.1007/s11274-018-2503-y. [3] 陈世国, 强胜. 生物除草剂研究与开发的现状及未来的发展趋势[J]. 中国生物防治学报, 2015, 31(5):770-779.doi:10.16409/j.cnki.2095-039x.2015.05.017. Chen S G, Qiang S. The status and future directions of bioherbicide study and development[J]. Chinese Journal of Biological Control, 2015, 31(5):770-779. [4] Lee D L, Knudsen C G, Michaely W J, Chin H L, Nguyen N H, Carter C G, Cromartie T H, Lake B H, Shribbs J M, Fraser T. The structure activity relationships of the triketone class of HPPD herbicides[J]. Pest Management Science, 1998, 54(4):377-384.doi:10.1002/(SICI)1096-9063(199812)54:4<377∷AID-PS827>3.0. CO;2-0. [5] Duke S O. Why have no new herbicide modes of action appeared in recent years?[J]. Pest Management Science, 2012, 68(4):505-512.doi:10.1002/ps.2333. [6] Redlick C, Syrovy L D, Duddu H S N, Benaragama D, Johnson E N,Willenborg C J,Shirtiffe S J. Developing an integrated weed management system for herbicide-resistant weeds using lentil(Lens culinaris) as a model crop[J]. Weed Science, 2017, 65(6):778-786.doi:10.1017/wsc.2017.47. [7] Fleet B, Malone J, Preston C, Gill G. Target-site point mutation conferring resistance to trifluralin in rigid ryegrass(Lolium rigidum)[J]. Weed Science, 2018, 66(2):246-253.doi:10.1017/wsc.2017.67. [8] Fu Y B, Mu Y, Lei H, Wang P,Li X, Leng Q, Han L, Qu X D,Wang Z Y,Huang X S. Design, synthesis and evaluation of novel tacrine-ferulic acid hybrids as multifunctional drug candidates against alzheimer's disease[J]. Molecules, 2016, 21(10):1338-1348.doi:10.3390/molecules21101338. [9] Totani N, Tateishi S, Takimoto T, Shinohara R,Sasaki H. Ferulic acid esters and weight-loss promoting effects in rats[J]. Journal of Oleo Science, 2012, 61(6):331-336.doi:10.5650/jos.61.331. [10] 张明月, 刘策, 杨娟, 乔欣, 张利辉, 董金皋. 4-羟基-3-甲氧基肉桂酸乙酯的生物活性及其除草作用机制[J]. 植物保护学报, 2018, 45(3):543-551.doi:10.13802/j.cnki.zwbhxb.2018.2016210. Zhang M Y, Liu C, Yang J, Qiao X, Zhang L H, Dong J G.The biological activity of 4-hydroxy-3-methoxycinnamate acid ethyl ester and its herbicidal mechanism[J]. Journal of Plant Protection, 2018, 45(3):543-551. [11] 张利辉, 张洋, 司贺龙,董金皋,张金林. 瓜果腐霉毒素除草活性物质的初步分离[J]. 河北农业大学学报, 2008,31(5):71-74.doi:10.3969/j.issn.1000-1573.2008.05.016. Zhang L H, Zhang Y, Si H L, Dong J G, Zhang J L. Primary isolation of herbicidal substances in crude toxin produced by Pythium aphanider-matum[J]. Journal of Agricultural University of Hebei, 2008,31(5):71-74. [12] 杨鹏,杨娟,王伟,张明月,张利辉,董金皋.阿魏酸衍生物的合成及其除草活性测定[J]. 植物保护学报, 2015,42(6):1050-1056.doi:10.13802/j.cnki.zwbhxb.2015.06.029. Yang P, Yang J, Wang W, Zhang M Y, Zhang L H,Dong J G. Synthesis and herbicidal activity of the derivatives of ferulis acid[J]. Journal of Plant Protection, 2015,42(6):1050-1056. [13] Zhang L H, Zhang J L, Liu Y C,Cao Z Y,Han J M,Yang J,Dong J G. Isolation and structural speculation of herbicide-active compounds from the metabolites of Pythium aphanidermatum[J]. Journal of Integrative Agriculture, 2013, 12(6):1026-1032.doi:10.1016/S2095-3119(13)60480-3. [14] Zhang M Y, Liu C, Yang J, Yang P, Zhang L H, Dong J G. Analysis of the herbicidal mechanism of 4-hydroxy-3-methoxy cinnamic acid ethyl ester using iTRAQ and Real-time PCR[J]. Journal of Proteomics, 2017, 159:47-53.doi:10.1016/j.jprot.2017.02.014. [15] Schmid M, Davison T S, Henz S R, Pape U J, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann J U. A gene expression map of Arabidopsis thaliana development[J]. Nature Genetics, 2005, 37(5):501-506.doi:10.1038/ng1543. [16] Rutschow H, Ytterberg A J, Friso G F, Nilsson R, Wijk K J V. Quantitative proteomics of a chloroplast SRP54 sorting mutant and its genetic interactions with CLPC1 in Arabidopsis[J]. Plant physiology, 2008, 148(1):156-175.doi:10.1104/pp.108.124545. [17] Li M, Wang Q Q, Song X F, Guo J J, Wu J R, Wu R N. iTRAQ-based proteomic analysis of responses of Lactobacillus plantarum fs5-5 to salt tolerance[J]. Annals of Microbiology, 2019, 69(4):377-394.doi:10.1007/s13213-018-1425-0. [18] Pan L, Zhang J, Wang J Z, Qin Y, Bai L Y, Dong L Y. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in three fenoxaprop-P-ethyl-resistant Beckmannia syzigachne biotypes with differing ACCase mutations[J]. Journal of Proteomics, 2017, 160:47-54.doi:10.1016/j.jprot.2017.03.018. [19] Yan Y, Liu Q K, Zang X, Bat-Erdene U, Nguyen C, Gan J H, Zhou J H, Jacobsen S E, Tang Y. Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action[J]. Nature, 2018, 559:415-418.doi:10.1038/s41586-018-0319-4. [20] Wallace M D, Waraich N F, Debowski A W, Corrol M G, Maxwell A, Mylne J S, Stubbs K A. Developing ciprofloxacin analogues against plant DNA gyrase:a novel herbicide mode of action[J]. Chemical communications, 2018, 54(15):1869-1872.doi:10.1039/C7CC09518J. [21] Wright A A, Sasidharan R, Koski L, Rodriguez-carres M, Peterson D G, Nandula V K, Ray J D, Bond J A, Shaw D R. Transcriptomic changes in Echinochloa colona in response to treatment with the herbicide imazamox[J]. Planta, 2018, 247(2):369-379.doi:10.1007/s00425-017-2784-7. |