[1] |
张和义, 胡萌潮, 李苏迎. 芽苗菜生产新技术[M]. 北京: 金盾出版社, 2014.
|
|
Zhang H Y, Hu M C, Li S Y. New technology of sprout production[M]. Beijing: Jindun Press, 2014.
|
[2] |
Uuh-narvaez J J, Segura-campos M R. Cabbage ( Brassica oleracea var. capitata):a food with functional properties aimed to type 2 diabetes prevention and management[J]. Journal of Food Science, 2021, 86(11):4775-4798.doi: 10.1111/1750-3841.15939.
pmid: 34658044
|
[3] |
|
|
Che G H, Zhang G H, Xiao J X, Li X D, Guo L P. Effect of blue light photoperiods on nutritional quality of cabbage sprouts[J]. Food Research and Development, 2022, 43(14):16-22.
|
[4] |
Cartea M E, Velasco P. Glucosinolates in Brassica foods:bioavailability in food and significance for human health[J]. Phytochemistry Reviews, 2008, 7(2):213-229.doi: 10.1007/s11101-007-9072-2.
URL
|
[5] |
Vaughn S F, Berhow M A. Glucosinolate hydrolysis products from various plant sources:pH effects,isolation,and purification[J]. Industrial Crops and Products, 2005, 21(2):193-202.doi: 10.1016/j.indcrop.2004.03.004.
URL
|
[6] |
Sønderby I E, Geu-Flores F, Halkier B A. Biosynthesis of glucosinolates-gene discovery and beyond[J]. Trends in Plant Science, 2010, 15(5):283-290.doi: 10.1016/j.tplants.2010.02.005.
pmid: 20303821
|
[7] |
Sun B, Liu N, Zhao Y T, Yan H Z, Wang Q M. Variation of glucosinolates in three edible parts of Chinese kale ( Brassica alboglabra Bailey) varieties[J]. Food Chemistry, 2011, 124(3):941-947.doi: 10.1016/j.foodchem.2010.07.031.
URL
|
[8] |
Lin L Z, Harnly J M. Identification of the phenolic components of collard greens,kale,and Chinese broccoli[J]. Journal of Agricultural and Food Chemistry, 2009, 57(16):7401-7408.doi: 10.1021/jf901121v.
URL
|
[9] |
Ku K M, Jeffery E H, Juvik J A. Exogenous methyl jasmonate treatment increases glucosinolate biosynthesis and quinone reductase activity in kale leaf tissue[J]. PLoS One, 2014, 9(8):e103407.doi: 10.1371/journal.pone.0103407.
URL
|
[10] |
Miao H Y, Wang M Y, Chang J Q, Tao H, Sun B, Wang Q M. Effects of glucose and gibberellic acid on glucosinolate content and antioxidant properties of Chinese kale sprouts[J]. Journal of Zhejiang University Science B, 2017, 18(12):1093-1100.doi: 10.1631/jzus.B1700308.
URL
|
[11] |
|
|
Fan L P, Liu Z W, Jiao W J, Huang L H. Research progress on preparation and efficacy of chiooligosaccharide complex[J]. Science and Technology of Food Industry, 2022, 43(9):404-415.
|
[12] |
杨顺, 唐鸿吕, 许忠民, 黄炜, 李大伟, 费思明, 魏文婧. 壳寡糖对盐胁迫下甘蓝幼苗生理特性的影响[J]. 分子植物育种, 2023, 20:1-12.
|
|
Yang S, Tang H L, Xu Z M, Huang W, Li D W, Fei S M, Wei W J. Effects of chitooligosaccharides on the physiological characteristics of kale seedlings under salt stress[J]. Molecular Plant Breeding, 2023, 20:1-12.
|
[13] |
Zong H Y, Li K C, Liu S, Song L, Xing R E, Chen X L, Li P C. Improvement in cadmium tolerance of edible rape ( Brassica rapa L.) with exogenous application of chitooligosaccharide[J]. Chemosphere, 2017, 181:92-100.doi: 10.1016/j.chemosphere.2017.04.024.
URL
|
[14] |
冶楠, 朱艳, 赵元寿, 朱建宁, 门佳伟, 陈富, 孔德媛, 张卫兵, 宗元元, 李永才. 壳寡糖浸种对马铃薯微型薯芽生长和内源激素含量的影响[J]. 中国农业科学, 2023, 56(4):788-800.doi: 10.3864/j.issn.0578-1752.2023.04.016.
|
|
Ye N, Zhu Y, Zhao Y S, Zhu J N, Men J W, Chen F, Kong D Y, Zhang W B, Zong Y Y, Li Y C. Effects of seed soaking with chitooligosaccharide on the growth of sprout and endogenous phytohormone content in potato minitubers[J]. Scientia Agricultura Sinica, 2023, 56(4):788-800.
doi: 10.3864/j.issn.0578-1752.2023.04.016
|
[15] |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
|
|
Li H S. Principles and techniques of plant physiology and biochemistry experiments[M]. Beijing: Higher Education Press, 2000.
|
[16] |
田璐. NaCl和CaCl2处理对西兰花芽苗菜营养与功能品质的影响[D]. 南京: 南京农业大学, 2017.
|
|
Tian L. Effects of NaCl and CaCl2 treatments on the nutritional and functional properties of broccoli sprouts[D]. Nanjing: Nanjing Agricultural University, 2017.
|
[17] |
|
|
Zhao D Q, Sun Y T, Huang J Y, Song Y C. Determination of bioactive ingredients in broccoli leaves[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(6):1266-1271.
doi: 10.11869/j.issn.100-8551.2020.06.1266
|
[18] |
|
|
Gao S W. Research and application on enrichment process of bioactator in broccoli sprouts[D]. Xi'an: Northwest University, 2022.
|
[19] |
|
|
Liu Q N, Huang W, Ding Y H, Wang Y Q, Hu L P, Zhao X Z, He H J, Liu G M. Rapid determination of RAA and GBC in broccoli by near infrared spectroscopy[J]. Scientia Agricultura Sinica, 2020, 53(21):4497-4506.
doi: 10.3864/j.issn.0578-1752.2020.21.017
|
[20] |
|
|
Li X Y, Yang R Q, Wang P, Tian L, Gu Z X. The changes of growth status and glucosinolate metabolism during the germination of rocket seeds[J]. Science and Technology of Food Industry, 2018, 39(2):51-55,60.
|
[21] |
|
|
Chu T, Peng C, Guo L P. Effect of MgSO4 treatment on bioactive compounds and antioxidant activity in broccoli sprouts[J]. Food Science, 2018, 39(11):53-59.
|
[22] |
|
|
Zhang Z P, Fu Z L. Research progress of relationship between chlorophyll content of wheat leaves and yield[J]. Anhui Agricultural Science Bulletin, 2015, 21(10):36-37,81.
|
[23] |
Fang H, Song H Y, Cao F, He Y, Qiu Z J. Study on the relationship between spectral properties of oilseed rape leaves and their chlorophyll content[J]. Guang Pu Xue Yu Guang Pu Fen Xi, 2007, 27(9):1731-1734.
|
[24] |
Bae I Y, An J S, Oh I K, Lee H G. Optimized preparation of anthocyanin-rich extract from black rice and its effects on in vitro digestibility[J]. Food Science and Biotechnology, 2017, 26(5):1415-1422.doi: 10.1007/s10068-017-0188-x.
URL
|
[25] |
URL
|
[26] |
Senol F S, Kan A, Coksari G, Orhan I E. Antioxidant and anticholinesterase effects of frequently consumed cereal grains using in vitro test models[J]. International Journal of Food Sciences and Nutrition, 2012, 63(5):553-559.doi: 10.3109/09637486.2011.641943.
URL
|
[27] |
Xie W M, Xu P X, Liu Q. Antioxidant activity of water-soluble chitosan derivatives[J]. Bioorganic & Medicinal Chemistry Letters, 2001, 11(13):1699-1701.doi: 10.1016/s0960-894x(01)00285-2.
URL
|
[28] |
|
|
Zhou G, Jin X Y, Deng G H, Qiu L H, Zou C L, Li Y R. Chitosan oligosaccharide induced changes in polyphenols and defense enzymes activities in sugarcane leaves[J]. Journal of Southern Agriculture, 2011, 42(8):874-877.
|
[29] |
|
|
Cheng K, Yang L M, Fang Z Y, Liu Y M, Zhuang M, Zhang Y Y, Sun P T. Research progress on regulation and synthesis genes on glucosinolates biosynthesis in crucifer[J]. China Vegetables, 2010(12):1-6.
|
[30] |
|
|
Wang X, Wang Q L, Zheng X H, Lü X G. Screening,microencapsulation and characterization of myrosinase enzyme content in broccoli sprouts of different varieties[C]. Xi'an:Chinese Society for Food Science and Technology, 2020.
|
[31] |
|
|
Sun Y W, Zhang Z S, Wang T X, Li Y M, Qin C G. The research progress of myrosinase in cruciferous plants[J]. Food Research and Development, 2017, 38(11):216-220.
|
[32] |
|
|
Wang Y X, Zhang S P, Ding Y P, Liu J Y, Yuan H J, Pan L. Determination of trace-elements and quality evaluation of the wild Chinese velvet bean grown in the area of Dabie mountain[J]. Physical Testing and Chemical Analysis Part B (Chemical Analysis), 2008, 44(1):63-65.
|
[33] |
|
|
Wang Z Y, Sun G Y. Effects of nitrogen and potassium fertilizers combined application on yield and quality of broccoli[J]. Journal of Changjiang Vegetables, 2017(22):71-75.
|
[34] |
Verbruggen N, Hermans C. Physiological and molecular responses to magnesium nutritional imbalance in plants[J]. Plant and Soil, 2013, 368(1):87-99.doi: 10.1007/s11104-013-1589-0.
URL
|
[35] |
郭丽丽, 赵竹青, 石磊, 朱端卫, 耿明建. 硼对不同硼效率甘蓝型油菜嫁接植株下部叶片矿质养分含量的影响[J]. 中国油料作物学报, 2010, 32(1):89-93.
|
|
Guo L L, Zhao Z Q, Shi L, Zhu D W, Geng M J. Effect of boron on nutrient content in the bottom leaves of two boron-efficiency rapeseed cultivars and their grafted plants[J]. Chinese Journal of Oil Crop Sciences, 2010, 32(1):89-93.
|
[36] |
|
|
Sun L, Li Z X, Wang G Y, Liu X T. Analysis on nutrition quality of different varieties of straight cylinder Chinese cabbage[J]. Guangdong Agricultural Sciences, 2013, 40(20):35-37.
|