[1] |
doi: 10.3864/j.issn.0578-1752.2020.02.006
|
|
Wang X M, Duan C X. Reorganization of maize disease and causal agent names and disscution on their standardized translation of Chinese names[J]. Scientia Agricultura Sinica, 2020, 53(2):288-316.
doi: 10.3864/j.issn.0578-1752.2020.02.006
|
[2] |
Al-Sadi A M. Bipolaris sorokiniana-induced black point,common root rot,and spot blotch diseases of wheat:A review[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11:584899.doi: 10.3389/fcimb.2021.584899.
doi: 10.3389/fcimb.2021.584899
URL
|
[3] |
doi: 10.16688/j.zwbh.2018442
|
|
Wang Z Y, Wang X M. Current status and management strategies for corn pests and diseases in China[J]. Plant Protection, 2019, 45(1):1-11.
|
[4] |
doi: 10.13597/j.cnki.maize.science.2014.06.025
|
|
Ji L J, Li Q S, Wang L S, Li C C, Kong L X. Occurrence and identification of maize root rot diseases and the pathogens in Hebei Province[J]. Journal of Maize Sciences, 2014, 22(6):138-141.
|
[5] |
石洁, 王振营. 玉米病虫害防治彩色图谱[M]. 北京: 中国农业出版社, 2011.
|
|
Shi J, Wang Z Y. Color atlas for controlling maize disease and pests[M]. Beijing: China Agriculture Press, 2011.
|
[6] |
doi: 10.13802/j.cnki.zwbhxb.2021.2020147
|
|
Yang Y H, Wang M Y, Cao Z Y, Shentu X P, Yu X P. Nested multiplex PCR to detect two major fungal pathogens of mondo grass Ophiopogon japonicus[J]. Journal of Plant Protection, 2021, 48(4):742-747.
|
[7] |
doi: 10.16688/j.zwbh.2020038
|
|
Ma W D, Tian Y Y, Jiao Z Y, Zhou T, Fan Z F. Recombinase polymerase amplification and its applications in quick detection of plant pathogens[J]. Plant Protection, 2021, 47(3):1-5,13.
|
[8] |
doi: 10.3969/j.issn.1000-1565.2021.05.013
|
|
Shi L, Wang M, Shi G Q, Dong Z G, Liu Y. Research progress of loop-mediated isothermal amplification technology[J]. Journal of Hebei University (Natural Science Edition), 2021, 41(5):565-571.
|
[9] |
doi: 10.7685/jnau.201703025
|
|
Li Q L, Shen D Y, Yu J, Zhao Y Y, Zhu Y, Dou D L. Rapid detection of Pythium aphanidermatum by loop-mediated isothermal amplification[J]. Journal of Nanjing Agricultural University, 2018, 41(1):79-87.
|
[10] |
doi: 10.3864/j.issn.0578-1752.2022.01.007
|
|
Li Z X, Li W T, Huang J Q, Zheng Z, Xu M R, Deng X L. Detection of candidatus Liberibacter asiaticus, by membrane adsorption method combined with visual loop-mediated isothermal amplification[J]. Scientia Agricultura Sinica, 2022, 55(1):74-84.
|
[11] |
Hieno A, Li M Z, Afandi A, Otsubo K, Suga H, Kageyama K. Detection of the genus Phytophthora and the species Phytophthora nicotianae by LAMP with a QProbe[J]. Plant Disease, 2020, 104(9):2469-2480.doi: 10.1094/PDIS-12-19-2523-RE.
doi: 10.1094/PDIS-12-19-2523-RE
URL
|
[12] |
Siemonsmeier A, Hadersdorfer J, Neumüller M, Schwab W, Treutter D. A LAMP protocol for the detection of Candidatus phytoplasma pyri,the causal agent of pear decline[J]. Plant Disease, 2019, 103(6):1397-1404.doi: 10.1094/PDIS-12-18-2150-RE.
doi: 10.1094/PDIS-12-18-2150-RE
pmid: 31012821
|
[13] |
Mahas A, Hassan N, Aman R, Marsic T, Wang Q C, Ali Z, Mahfouz M M. LAMP-coupled CRISPR-Cas12a module for rapid and sensitive detection of plant DNA viruses[J]. Viruses, 2021, 13(3):466.doi: 10.3390/v13030466.
doi: 10.3390/v13030466
URL
|
[14] |
Ahuja A, Somvanshi V S. Diagnosis of plant-parasitic Nematodes using loop-mediated isothermal amplification(LAMP):A review[J]. Crop Protection, 2021, 147:105459.doi: 10.1016/j.cropro.2020.105459.
doi: 10.1016/j.cropro.2020.105459
URL
|
[15] |
Chen Z D, Kang H J, Chai A L, Shi Y X, Xie X W, Li L, Li B J. Development of a loop-mediated isothermal amplification(LAMP)assay for rapid detection of Pseudomonas syringae pv. tomato in planta[J]. European Journal of Plant Pathology, 2020, 156(3):739-750.doi: 10.1007/s10658-019-01923-8.
doi: 10.1007/s10658-019-01923-8
|
[16] |
Le D T, Vu N T. Progress of loop-mediated isothermal amplification technique in molecular diagnosis of plant diseases[J]. Applied Biological Chemistry, 2017, 60(2):169-180.doi: 10.1007/s13765-017-0267-y.
doi: 10.1007/s13765-017-0267-y
|
[17] |
Shimizu K, Tanaka C, Peng Y L, Tsuda M. Phylogeny of Bipolaris inferred from nucleotide sequences of Brn1,a reductase gene involved in melanin biosynthesis[J]. The Journal of General and Applied Microbiology, 1998, 44(4):251-258.doi: 10.2323/jgam.44.251.
doi: 10.2323/jgam.44.251
URL
|
[18] |
doi: 10.13926/j.cnki.apps.000049
|
|
Guo N, Ni X, Shi J, Ma J Y, Xue C S, Chen J. The occurrence and pathogen identification of leaf spot on maize[J]. Acta Phytopathologica Sinica, 2017, 47(1):1-8.
|
[19] |
Matusinsky P, Frei P, Mikolasova R, Svacinova I, Tvaruzek L, Spitzer T. Species-specific detection of Bipolaris sorokiniana from wheat and barley tissues[J]. Crop Protection, 2010, 29(11):1325-1330.doi: 10.1016/j.cropro.2010.07.013.
doi: 10.1016/j.cropro.2010.07.013
URL
|
[20] |
Aggarwal R, Gupta S, Banerjee S, Singh V B. Development of a SCAR marker for detection of Bipolaris sorokiniana causing spot blotch of wheat[J]. Canadian Journal of Microbiology, 2011, 57(11):934-942.doi: 10.1139/w11-089.
doi: 10.1139/w11-089
pmid: 22017748
|
[21] |
Moya-Elizondo E A, Rew L J, Jacobsen B J, Hogg A C, Dyer A T. Distribution and prevalence of Fusarium crown rot and common root rot pathogens of wheat in Montana[J]. Plant Disease, 2011, 95(9):1099-1108.doi: 10.1094/PDIS-11-10-0795.
doi: 10.1094/PDIS-11-10-0795
pmid: 30732055
|
[22] |
doi: 10.13346/j.mycosystema.130075
|
|
Chen Q Q, Sun B J, Yuan H X, Shi Y, Li H L. Quantitative detection of Bipolaris sorokiniana in winter wheat based on SYBR Green Ⅰ real-time PCR[J]. Mycosystema, 2014, 33(3):690-696.
|
[23] |
doi: 10.13926/j.cnki.apps.000744
|
|
Cui L K, He Z H, Kang Y B, Hu Y H. Rapid detection of Bipolaris sorokiniana based on loop-mediated isothermal amplification[J]. Acta Phytopathologica Sinica, 2022, 52(2):269-275.
|
[24] |
Zhao W, Chi Y K, Ye M D, Wang T, Xu A M, Qi R D. Development and application of recombinase polymerase amplification assay for detection of Bipolaris sorokiniana[J]. Crop Protection, 2021, 145:105619.doi: 10.1016/j.cropro.2021.105619.
doi: 10.1016/j.cropro.2021.105619
URL
|