[1] Hackbusch J, Richter K, Müller J, Salamini F, Uhrig J F. A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins[J]. Proceedings of the National Academy of Sciences, 2005, 102(13):4908-4912.doi:10.1073/pnas.0501181102. [2] Liu J P, Van Eck J, Cong B, Tanksley S D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit[J]. Proceedings of the National Academy of Sciences, 2002, 99(20):13302-13306.doi:10.1073/pnas.162485999. [3] Liu D, Sun W, Yuan Y W, Zhang N, Hayward A, Liu Y L, Wang Y. Phylogenetic analyses provide the first insights into the evolution of ovate family proteins in land plants[J]. Annals of Botany, 2014, 113(7):1219-1233.doi:10.1093/aob/mcu061. [4] Schmitz A J, Begcy K, Sarath G, Walia H. Rice Ovate family protein 2(OFP2) alters hormonal homeostasis and vasculature development[J]. Plant Science, 2015, 241:177-188.doi:10.1016/j.plantsci.2015.10.011. [5] Wang S C, Chang Y, Guo J J, Chen J G. Arabidopsis ovate family protein 1 is a transcriptional repressor that suppresses cell elongation[J]. The Plant Journal, 2007,50(5):858-872.doi:10.1111/j.1365-313x.2007.03096.x. [6] Li E Y, Wang S C, Liu Y Y, Chen J G, Douglas C J. OVATE FAMILY PROTEIN4(OFP4) interaction with KNAT7 regulates secondary cell wall formation in Arabidopsis thaliana[J]. The Plant Journal,2011, 67(2):328-341.doi:10.1111/j.1365-313x.2011.04595.x. [7] 杨丽.Ⅲ型卵形蛋白家族转录因子AtOFP16调控拟南芥荚果形态的机制[D].长春:东北师范大学, 2017. Yang L. Regulation of siliques morphology by AtOFP16, A member of the class Ⅲ OVATE family proteins in Arabidopsis[D].Changchun:Northeast Normal University, 2017. [8] Tang Y, Zhang W, Yin Y L, Feng P, Li H L, Chang Y. Expression of ovate family protein 8 affects epicuticular waxes accumulation in Arabidopsis thaliana[J]. Botanical Studies, 2018, 59(1):12.doi:10.1186/s40529-018-0228-8. [9] Hatterman-valenti H, Pitty A, Owen M. Environmental effects on velvetleaf(Abutilon theophrasti) epicuticular wax deposition and herbicide absorption[J]. Weed Science, 2011, 59(1):14-21.doi:10.1614/WS-D-10-00061. [10] 唐尧, 张微, 尹艳莉, 冯鹏, 陈宇峰, 常缨. 拟南芥AtOFP8 的生物信息学分析及表达分析[J].北方园艺,2018,417(18):35-41. Tang Y, Zhang W, Yin Y L, Feng P, Chen Y F, Chang Y. Bioinformatics analysis and expression analysis of AtOFP8 in Arabidopsis thaliana[J]. Northern Horticulture,2018,417(18):35-41. [11] 唐尧.拟南芥转录因子AtOFP8在干旱胁迫下的功能分析[D].哈尔滨:东北农业大学, 2018. Tang Y. Functional analysis of Arabidopsis transcriptional factor AtOFP8 under drought stress[D].Harbin:Northeast Agricultural University,2018. [12] Ma Y M, Yang C, He Y, Tian Z H, Liu J X. Rice OVATE family protein 6 regulates plant development and confers resistance to drought and cold stresses[J]. Journal of Experimental Botany, 2017, 68(17):4885-4898.doi:10.1093/jxb/erx309. [13] Madhava Rao K V, Sresty T V S. Antioxidative parameters in the seedlings of pigeonpea(Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses[J]. Plant Science, 2000, 157(1):113-128.doi:10.1016/s0168-9452(00)00273-9. [14] Wang Y, Wu W H. Plant sensing and signaling in response to K+-deficiency[J]. Molecular Plant, 2010, 3(2):280-287.doi:10.1093/mp/ssq006. [15] Giannopolitis C N, Ries S K. Superoxide dismutases, 1.Occurrence in higher plants[J]. Plant Physiology, 1977,59(2):309-314.doi:10.1104/pp.59.2.309. [16] Wang F B, Tong W J, Zhu H, Kong W L, Peng R H, Liu Q C, Yao Q H. A novel Cys2/His2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis[J]. Planta, 2016, 243(3):783-797.doi:10.1007/s00425-015-2443-9. [17] 王孝平,刑树礼.考马斯亮蓝法测定蛋白质含量的研究[J].天津化工,2009,23(3):40-42.doi:10.3969/j.issn.1008-1267.2009.03.016. Wang X P, Xing S L. Determination of protein quantitation using the method of coomassie brilliant blue[J]. Tianjin Chemical Industry, 2009,23(3):40-42. [18] 杨晓娟, 居辉, 王治世, 郭安廷,杨佑明. 花后高温和干旱对冬小麦光合、抗氧化特性及粒重的影响[J]. 麦类作物学报, 2015, 35(7):958-963.doi:10.7606/j.issn.1009-1041.2015.07.11. Yang X J, Ju H, Wang Z S, Guo A T, Yang Y M. Effects of high temperature and drought after anthesis on photosynthesis, antioxidant properties and grain weight of winter wheat[J]. Journal of Triticeae Crops, 2015, 35(7):958-963. [19] 闫成仕. 水分胁迫下植物叶片抗氧化系统的响应研究进展[J]. 烟台师范学院学报(自然科学版), 2002, 18(3):220-225.doi:10.3969/j.issn.1673-8020.2002.03.015. Yan C S. Advances responses to water stress in plant leaves[J]. Yantai Normal University Journal(Natural Science Edition), 2002,18(3):220-225. [20] 张强, 杨玉珍, 彭方仁. 干旱胁迫下不同种源香椿可溶性蛋白的动态变化[J].安徽农业科学, 2009,37(1):65-66,71.doi:10.3969/j.issn.0517-6611.2009.01.030. Zhang Q, Yang Y Z, Peng F R. Dynamic changes of soluble protein in different provenances of Toona sinensis under drought stress[J]. Journal of Anhui Agricultural Sciences, 2009,37(1):65-66,71. [21] 任磊, 赵夏陆, 许靖, 张宏毅, 郭彦宏, 郭福龙, 张春来, 吕晋慧.4种茶菊对干旱胁迫的形态和生理响应[J].生态学报, 2015, 35(15):5131-5139.doi:10.5846/stxb201401220164. Ren L, Zhao X L, Xu J, Zhang H Y, Guo Y H, Guo F L, Zhang C L, Lü J H. Varied morphological and physiological responses to drought stress among four tea Chrysanthemum cultivars[J]. Acta Ecologica Sinica, 2015, 35(15):5131-5139. [22] 付咪咪, 李鲜花, 李强. 干旱胁迫对黄秋葵种子萌发的影响[J].山西农业科学, 2018,46(3):350-353.doi:10.3969/j.issn.1002-2481.2018.03.10. Fu M M, Li X H, Li Q. Effect of drought stress on the germination of okra seed[J]. Journal of Shanxi Agricultural Sciences, 2018,46(3):350-353. [23] Liu Y, Xu H, Wen X X, Liao Y C. Effect of polyamine on seed germination of wheat under drought stress is related to changes in hormones and carbohydrates[J]. Journal of Integrative Agriculture, 2016, 15(12):2759-2774. doi:10.1016/S2095-3119(16)61366-7. [24] 王纪华, 赵春江, 黄文江, 郭晓维, 李鸿祥. 土壤水分对小麦叶片含量水量及生理功能的影响[J].麦类作物学报, 2001, 21(4):42-47. Wang J H, Zhao C J, Huang W J, Guo X W, Li H X. Effects of soil water content on the wheat leaf water content and the physiological function[J]. Journal of Triticeae Crops, 2001, 21(4):42-47. [25] Jajic I,Sarna T,Strzalka K. Senescence, stress, and reactive oxygen species[J]. Plants, 2015, 4(3):393-411.doi:10.3390/plants4030393. [26] Lee S, Seo P J, Lee H J, Park C M. A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis[J]. The Plant Journal,2012,70(5):831-844. doi:10.1111/j.1365-313X.2012.04932.x. [27] 孙存华,李扬,圆鸿雁,孙东旭,杜伟,郑曦.藜对干旱胁迫的生理生化反应[J].生态学报,2005,25(10):2556-2561.doi:10.3321/j.issn:1000-0933.2005.10.014. Sun C H, Li Y, He H Y, Sun D X, Du W, Zhang X. Physiological and biochemical responses of Chenopodium album to drought stresses[J]. Acta Ecologica Sinica, 2005, 25(10):2556-2561. [28] Thomashow M F. Plant cold acclimation:freezing tolerance genes and regulatory mechanisms[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50:571-599.doi:10.1146/annurev.arplant.50.1.571. [29] 柳展基, 邵凤霞, 唐桂英. 植物NAC转录因子的结构功能及其表达调控研究进展[J]. 西北植物学报, 2007, 27(9):1915-1920.doi:10.3321/j.issn:1000-4025.2007.09.035. Liu Z J, Shao F X, Tang G Y. The research progress of structure,function and regulation of plant NAC transcription factors[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(9):1915-1920. [30] Bruxelles G L D, Peacock W J, Dennis E S, Dolferus R. Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis[J]. Plant Physiology, 1996, 111(2):381-391.doi:10.1104/PP.111.2.381. [31] Fujita M, Fujita Y, Maruyama K, Seki M,Hiratsu K, Ohme-Takagi M, Tran L, Yamaguchi-Shinozaki K, Shinozaki K. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway[J]. The Plant Journal, 2004, 39(6):863-876.doi:10.1111/j.1365-313x.2004.02171.x. [32] Kim S J, Ryu M Y, Kim W T. Suppression of Arabidopsis RING-DUF1117 E3 ubiquitin ligases, AtRDUF1 and AtRDUF2, reduces tolerance to ABA-mediated drought stress[J]. Biochemical and Biophysical Research Communications, 2012, 420(1):141-147.doi:10.1016/j.bbrc.2012.02.131. [33] Kiyosue T, Shinozaki K Y, Shinozaki K. Cloning of cDNAs for genes that are early-responsive to dehydration stress(ERDs) in Arabidopsis thaliana L.:identification of three ERDs as HSP cognate genes[J]. Plant Molecular Biology, 1994, 25:791-798.doi:10.1007/BF00028874. |