[1] Kleist T J, Luan S. Constant change:dynamic regulation of membrane transport by calcium signalling networks keeps plants in tune with their environment[J]. Plant Cell & Environment, 2016, 39(3):467-481.
[2] Sanyal S K, Pandey A, Pandey G K. The CBL-CIPK signaling module in plants:a mechanistic perspective[J]. Physiologia Plantarum, 2015, 155(2):89-108.
[3] Luo Q, Wei Q, Wang R, et al. BdCIPK31, a calcineurin B-like protein-interacting protein kinase, regulates plant response to drought and salt stress[J]. Frontiers in Plant Science, 2017, 1184(8):1-16.
[4] Luan S, Lan W, Chul L S. Potassium nutrition, sodium toxicity, and calcium signaling:connections through the CBL-CIPK network[J]. Current Opinion in Plant Biology, 2009, 12(3):339-346.
[5] Zhou H, Lin H, Chen S, et al. Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins.[J]. Plant Cell, 2014, 26(3):1166-1182.
[6] Held K, Pascaud F, Eckert C, et al. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex[J]. Cell Research, 2011, 21(7):1116-1130.
[7] Wang X P, Chen L M, Liu W X, et al. AtKC1 and CIPK23 synergistically modulate AKT1-mediated low potassium stress responses in Arabidopsis[J]. Plant Physiology, 2016, 170(4):2264-2277.
[8] Li J, Long Y, Qi G N, et al. The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex[J]. Plant Cell, 2014, 26(8):3387-3402.
[9] Hu H C, Wang Y Y, Tsay Y F. AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response[J]. Plant Journal, 2009, 57(2):264-278.
[10] Sanyal S K, Kanwar P, Yadav A K, et al. Arabidopsis CBL interacting protein kinase 3 interacts with ABR1, an APETALA2 domain transcription factor, to regulate ABA responses[J]. Plant Science, 2017, 254(8):48-59.
[11] Pandey G K, Kanwar P, Singh A, et al. CBL-interacting protein kinase, CIPK21, regulates osmotic and salt stress responses in Arabidopsis[J]. Plant Physiology, 2015, 169(1):780-792.
[12] Thoday-Kennedy E L, Jacobs A K, Roy S J. The role of the CBL-CIPK calcium signalling network in regulating ion transport in response to abiotic stress[J]. Plant Growth Regulation, 2015, 76(1):3-12.
[13] Liu L L,Ren H M,Chen L Q, et al. A protein kinase, calcineurin B-like protein-interacting protein kinase9, interacts with calcium sensor calcineurin B-like Protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis[J]. Plant Physiology, 2013, 161(1):266-277.
[14] Tang R J, Zhao F G, Garcia V J, et al. Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10):3134-3139.
[15] Steinhorst L, Mähs A, Ischebeck T, et al. Vacuolar CBL-CIPK12 Ca2+-sensor-kinase complexes are required for polarized pollen tube growth[J]. Current Biology, 2015, 25(11):1475-1482.
[16] Mogami J, Fujita Y, Yoshida T, et al. Two distinct families of protein kinases are required for plant growth under high external Mg2+ concentrations in Arabidopsis[J]. Plant Physiology, 2015, 167(3):1039-1057.
[17] Mao J, Manik S M N, Shi S, et al. Mechanisms and physiological roles of the CBL-CIPK networking system in Arabidopsis thaliana[J]. Genes, 2016, 7(9):62-77.
[18] Kanwar P, Sanyal S K, Tokas I, et al. Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice[J]. Cell Calcium, 2014, 56(2):81-95.
[19] Tai F, Yuan Z, Li S, et al. ZmCIPK8, a CBL-interacting protein kinase, regulates maize response to drought stress[J]. Plant Cell Tissue & Organ Culture, 2016, 124(3):459-469.
[20] Hu W, Xia Z, Yan Y, et al. Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes[J]. Frontiers in Plant Science, 2015, 6:1-16.
[21] Zhu K, Fei C, Liu J, et al. Evolution of an intron-poor cluster of the CIPK gene family and expression in response to drought stress in soybean[J]. Scientific Reports, 2016, 6:1-12.
[22] 许力, 黄路平, 鲁黎明,等. 烟草钾离子通道基因NtTPK的克隆及表达分析[J]. 浙江农业学报, 2017, 29(3):366-372.
[23] 张晋玉, 晁毛妮, 杜弘杨,等. 大豆ZF-HD转录因子GmZHD1的克隆及表达分析[J]. 华北农学报, 2017, 32(2):1-7.
[24] 张雪薇, 刘仑, 鲁黎明,等. 烟草磷酸酶基因NtPP2C16的克隆、表达载体构建及表达分析[J]. 华北农学报, 2017,32(5):78-85.
[25] Bender K W, Zielinski R E, Huber S C. Revisiting paradigms of Ca2+ signaling protein kinase regulation in plants[J]. Biochemical Journal, 2018, 475(1):207-223.
[26] 冯志娟, 徐盛春, 刘娜,等. 菜用大豆CIPK基因对逆境胁迫及激素的响应特征[J]. 植物遗传资源学报, 2017, 18(6):1168-1178.
[27] Sanyal S K, Pandey A, Pandey G K. The CBL-CIPK signaling module in plants:a mechanistic perspective[J]. Physiologia Plantarum, 2015, 155(2):89-108.
[28] 闫朝辉, 李桂荣, 扈岩松,等. 欧洲葡萄中CIPK基因的克隆及表达分析[J]. 园艺学报, 2017, 44(8):1463-1476.
[29] Zhang H, Yang B, Liu W Z, et al. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.)[J]. Bmc Plant Biology, 2014, 14(1):1-24.
[30] Hu Y, Jiang L, Wang F, et al. Jasmonate regulates the inducer of CBF expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis[J]. Plant Cell, 2013, 25(8):2907-2924.
[31] Xi Y, Liu J, Dong C, et al. The CBL and CIPK gene family in grapevine (Vitis vinifera):Genome-wide analysis and expression profiles in response to various abiotic stresses[J]. Frontiers in Plant Science, 2017, 978(8):1-15.
[32] Kanwar P, Sanyal S K, Tokas I, et al. Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice[J]. Cell Calcium, 2014, 56(2):81-95.
[33] Chen Xifeng,Gu Zhimin,Xin Dedong, et al. Identification and characterization of putative CIPK genes in maize[J]. Journal of Genetics and Genomics, 2011, 38(2):77-87.
[34] Yu Q, An L, Li W. The CBL-CIPK network mediates different signaling pathways in plants[J]. Plant Cell Reports, 2014, 33(2):203-214.
[35] Tang J, Lin J, Li H, et al. Characterization of cipk family in asian pear (Pyrus bretschneiderirehd) and co-expression analysis related to salt and osmotic stress responses[J]. Frontiers in Plant Science, 2016, 1361(7):1-14.
[36] Kim K N, Cheong Y H, Grant J J, et al. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis[J]. Plant Cell, 2003, 15(2):411-423. |