[1] Zhan Q W, Qian Z Q. Heterosis Utilization of hybrid between sorghum[Sorghum bicolor (L. ) Mocench] and sudangrass[Sorghum sudanense (Piper) stapf][J]. Acta Agron Sin, 2004, 30(1): 73-77.
[2] Xu W H, Wang K J. Comparison of yield and nutritive value in Sorghum, Sudangrass and Sorghum-Sudangrass hybrid[J]. Acta Agron Sin, 2006, 32(8): 1218-1222.
[3] Edwards M D, Helentjaris T, Wright S, et al. Molecular marker facilitated investigations of quantitative trait loci in maize 4 analysis based on genome saturation with isozyme and restriction fragment length polymorphism markers[J]. Theor Appl Genet. 1992, 83: 765-774.
[4] Paterson A H Damon S, Hewitt J D, et al. Mendelian factors underlying quantitative traits in tomato: Comparison across species, gemerations and environments[J], Genetics, 1990, 127: 181-197.
[5] DeVicente M C, Tanksley S D. QTL analysis of transgressive segregation in an interspecific tomato cross[J]. Genetics, 1993, 134: 585-596.
[6] Hayes P M, Liu B H, Knapp S J, et al. quantitative locus effects and environmental interaction in sample of North America barley germplasm[J]. Theor Appl Genet, 1993, 87: 392-401.
[7] Pan A, Hayes P M, Chen F, et al. Genetic analysis of the components of winter hardiness in barley (Hordeum vulgare L)[J]. Theor Appl Genet, 1994, 89: 900-910.
[8] Laurie D A, Pratchett N, Bezant J H, et al. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter spring barley(Hordeum vulgare L)cross[J]. Genome, 1995, 38: 575-585.
[9] Yu S B, LI J X, Xu C G, et al. Importance of epistasisi as the genetic basis of heterosisi in an elite rice hybrid[J]. Proc Natl Acad Sci USA, 1997, 94: 9226-9231.
[10] Li H B, Wang J, Liu A M, et al. Genetic basis of low temperature sensitive sterility in indica japonica hybrids of rice as determined by RFLP analysis[J]. Theor Appl Genet, 1997, 95: 1092-1097.
[11] Xiao J, Li J, Yuan L, et al. Dominance is the major genetic basis in rice as revealed by QTL analysis molecular markesrs[J]. Genetics, 1995, 140: 745-754.
[12] Huang Ning, Brightte Courtois, Gurdev S, et al. Association of quantitative trait loci for plant height with major dwarfing genes in rice[J]. Heredity, 1995, 1077: 130-137.
[13] Yano M, Harushima Y, Nagaruma Y, et al. Identification of quantitative trait loci controlling heading date in rice using a high density linkage map[J]. Theor Appl Genet, 1997, 95: 1025-1032.
[14] Redona E D, Mackill D J. Quantitative trait locus analysis for rice panicle and grain charactaristics[J]. Theor Appl Genet, 1998, 96: 957-963.
[15] Li Z K, Pinson S R M, Stansel J M, et al. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza slive L. )[J]. Theor Genet 1995, 91: 920-927.
[16] Ahn S, Tanksley S D. Comparative linkage maps of the rice and maize genomes[J]. Proc Natl Acad Sci USA, 1993, 90; 7980-7984.
[17] Heusden A W van, Ooijen J W van, Vrielink-van Ginkel R, et al. A genetic map of an interspecific cross in Allium based on amplified fragment length polymorphism (AFLP)markers[J]. Theoretical and Applied Genetics, 2000, 100: 118-126.
[18] Veldboom L R, Lee M, Woodman W L. Molecular maker-facilitated studies in an elite maize population: 1. Linkage analysis and detmation of QTL for morphological traits[J]. Theor Appl Genet, 1996, 94: 7-16.
[19] Stuber C W, Lincoln S E, Wolff D W, et al. Identification of genetic factors contribution to heterosis in a hybrid from two elite maize inbred lines using molecular markers[J], Genetics, 1992, 132: 823-839.
[20] Stuber C W. Mapping and manipulating quantitative traits in maize[J]. Trends in Genetics, 1995, 11: 477-481. |