Cloning and Expression Analysis of Potassium Channel NtSKOR Gene in Nicotiana tabacum
ZHUO Wei1,2, CHEN Qian1,2, YANG Shangyu1,2, LI Jiahao1,2, PENG Shuang1,2, WANG Jing1,2, LI Liqin1,2
1. College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China;
2. National Demonstration Center for Experimental Crop Science Education, Chengdu 611130, China
Abstract:Potassium channel is the main protein of plant uptake and translocation K+,and SKOR (Stelar K+ outwaed rectifier) belongs to Shaker channel family exogenous rectifier,which plays a key role in response to low potassium stress response in plants.In order to study the function and role of tobacco NtSKOR gene in abiotic stress response,one NtSKOR gene was cloned from Nicotiana tabacum K326 with homologous cloning strategy,gene expression patterns were analyzed by Real-time quantitative PCR,and their physicochemical properties,domains,phosphorylation sites and evolutionary relationships of proteins were predicted by bioinformatic analysis. Bioinformatics analysis showed that this gene contained 2 484 bp and encoded 827 amino acid. The predicted molecular weight was 94.75 ku and the isoelectric point (pI) was 6.52. The largest secondary structure element of this protein was α-helix,and the smallest was β-turn. NtSKOR contained six transmembrane domains(S1-S6),with three different kinase phosphorylation sites for serine,threonine and tyrosine. Phylogenetic analysis showed that the protein had 99% homology with Nicotiana sylvestris and 96% homology with Nicotiana tompentosiformis,thus it was named as NtSKOR. Expression patterns showed that the gene was expressed in roots,stems,leaves and flowers in mature stage,which had the highest expression in roots and the lowest expression level in flowers. Expression patterns under abiotic stress indicated the gene could respond rapidly to the adverse conditions of low potassium,high salt,drought,H2O2,ABA and 4℃. This suggests that NtSKOR gene plays an important regulatory role in tobacco abiotic stress,and the results provide a theoretical basis for further in-depth study of the NtSKOR function.
[1] 陆志峰,鲁剑巍,潘勇辉,等. 钾素调控植物光合作用的生理机制[J]. 植物生理学报,2016,52(12):1773-1784.
[2] 毛培培,赵云云. 植物对钾营养的吸收、运转和胁迫反应的研究进展[J]. 生物学通报,2008,43(8):11-13.
[3] 陈光,高振宇,徐国华. 植物响应缺钾胁迫的机制及提高钾利用效率的策略[J]. 植物学报,2017,52(1):89-101.
[4] 鲁黎明,杨铁钊. 植物K+吸收转运的分子机制研究进展[J]. 棉花学报,2006,18(6):379-385.
[5] Wang Y,Wu W H. Potassium transport and signaling in higher plants[J]. Annual Review of Plant Biology,2013,64(1):451-476.
[6] 陈勇. 烟草响应低钾胁迫的基因表达谱分析[D]. 雅安:四川农业大学,2014.
[7] 司丛丛,刘贯山,刘好宝,等. 烟草钾离子通道基因NKT5 的克隆和序列分析[J]. 中国烟草科学,2010,31(4):8-13.
[8] Dreyer I. Plant Potassium channels are in general dual affinity uptake systems[J]. Aims Biophysics,2017,4(1):90-106.
[9] Wang Y. Molecular genetic mechanism of high efficient Potassium uptake in plants[J]. Chinese Bulletin of Botany,2009,44(1):27-36.
[10] 李娟. 拟南芥钾通道AKT1参与低钾胁迫感受,调控根生长的机制研究[D]. 北京:中国农业大学,2017.
[11] 靳义荣. 植物Shaker家族钾离子通道研究进展[J]. 分子植物育种,2012,10(1):1360-1368.
[12] Gaymard F,Pilot G,Lacombe B,et al. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap[J]. Cell,1998,94(5):647-655.
[13] 董禄禄. 长叶红砂RtHKT1 与RtKCO1 钾离子转运蛋白基因的克隆及功能分析[D]. 呼和浩特:内蒙古大学,2016.
[14] Riedelsberger J,Sharma T,Gonzalez W,et al. Distributed structures underlie gating differences between the kin channel KAT1 and the Kout channel SKOR[J]. Molecular plant,2010,3(1):236-245.
[15] 张雪薇,刘仑,鲁黎明,等. 烟草磷酸酶基因NtPP2C16 的克隆,表达载体构建及表达分析[J]. 华北农学报,2017,32(5):78-85.
[16] Zeng S,Liu Y,Wu M,et al. Identification and validation of reference genes for quantitative real-time PCR normalization and its applications in lycium[J]. PLoS One,2014,9(5):e97039.
[17] Shin R,Schachtman D P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(23):8827-8832.
[18] Ahmad I,Mian A,Maathuis F J. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance[J]. Journal of Experimental Botany,2016,67(9):2689-2698.
[19] Gierth M,Maser P,Schroeder J I. The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis Roots[J]. Plant Physiology,2005,137(3):1105-1114.
[20] 伍国强,水清照,冯瑞军. 植物K+通道AKT1的研究进展[J]. 植物学报,2017,52(2):225-234.
[21] Lebaudy A,Véry A A,Sentenac H. K+ channel activity in plants:genes,regulations and functions[J]. FEBS Letters,2007,581(12):2357-2366.
[22] Lacombe B,Pilot G,Gaymard F,et al. pH control of the plant outwardly rectifying potassium channel SKOR[J]. FEBS Letters,2000,466(2/3):351-354.
[23] Garcia-Mata C,Wang J,Gajdanowicz P,et al. A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2[J]. The Journal of Biological Chemistry,2010,285(38):29286-29294.
[24] Sharma T,Dreyer I,Riedelsberger J. The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana[J]. Frontiers in Plant Science,2013,4(2):224.
[25] Ding S,Horn R. Effect of S6 tail mutations on charge movement in Shaker potassium channels[J]. Biophysical Journal,2003,84(1):295-305.
[26] Johansson I,Wulfetange K,Porée F,et al. External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism[J]. The Plant Journal:for Cell and Molecular Biology,2006,46(2):269-281.
[27] Hu J,Ma Q,Kumar T,et al. ZxSKOR is important for salinity and drought tolerance of Zygophyllum xanthoxylum by maintaining K+ homeostasis[J]. Plant Growth Regulation,2016,80(2):195-205.
[28] 蔡元保,朱家红,畅文军,等.巴西橡胶树K+通道蛋白基因HbKCO1 的克隆与表达分析[J]. 农业生物技术学报,2010,18(1):30-36.
[29] 张华宁,刘子会,李国良,等.盐胁迫下钾吸收途径的抑制对小麦叶片K+,Na+含量的影响[J]. 麦类作物学报,2017,37(11):1428-1433.
[30] Garriga M,Raddatz N,Véry A A,et al. Cloning and functional characterization of HKT1 and AKT1 genes of Fragaria spp.-Relationship to plant response to salt stress[J]. Journal of Plant Physiology,2017,210(3):9-17.
[31] 王茜,王沛,王锁民. 盐生植物小花碱茅外整流K+通道SKOR 基因片段的克隆及序列分析[J]. 草业科学,2012,29(8):1218-1223.
[32] 李毅晓,马清,王锁民.盐处理下ZxSOS1调控旱生植物霸王Na+、K+转运蛋白基因的表达[J]. 植物生理学报,2014,50(7):1053-1058.
[33] 刘丽萍,戴逢斌,张冲,等.黑果枸杞外整流钾离子通道SKOR 基因的克隆及表达分析[J]. 浙江农林大学学报,2018,35(1):104-111.