[1] |
Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynthesis in plants[J]. Current Opinion in Plant Biology, 2014, 19: 81-90.doi: 10.1016/j.pbi.2014.05.011.
doi: 10.1016/j.pbi.2014.05.011
pmid: 24907528
|
[2] |
Alappat B, Alappat J. Anthocyanin pigments: Beyond aesthetics[J]. Molecules, 2020, 25(23): E5500.doi: 10.3390/molecules25235500.
doi: 10.3390/molecules25235500
|
[3] |
de Mejia E G, Zhang Q Z, Penta K, Eroglu A, Lila M A. The colors of health: chemistry, bioactivity, and market demand for colorful foods and natural food sources of colorants[J]. Annual Review of Food Science and Technology, 2020, 11: 145-182.doi: 10.1146/annurev-food-032519-051729.
doi: 10.1146/annurev-food-032519-051729
pmid: 32126181
|
[4] |
Zha J, Koffas M A G. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives[J]. Synth Syst Biotechnol, 2017, 2(4): 259-266.doi: 10.1016/j.synbio.2017.10.005.
doi: 10.1016/j.synbio.2017.10.005
pmid: 29552650
|
[5] |
Arruda H S, Silva E K, Peixoto Araujo N M, Pereira G A, Pastore G M, Marostica Junior M R.Anthocyanins recovered from agri-food by-products using innovative processes: trends, challenges, and perspectives for their application in food systems[J]. Molecules, 2021, 26(9): 2632.doi: 10.3390/molecules26092632.
doi: 10.3390/molecules26092632
URL
|
[6] |
Zhu L, Huang Y, Zhang Y L, Xu C M, Lu J, Wang Y. The growing season impacts the accumulation and composition of flavonoids in grape skins in two-crop-a-year viticulture[J]. Journal of Food Science and Technology, 2017, 54(9): 2861-2870.doi: 10.1007/s13197-017-2724-3.
doi: 10.1007/s13197-017-2724-3
pmid: 28928526
|
[7] |
Li J, Shi C, Shen D B, Han T Y, Wu W L, Lü L F, Li W L. Composition and antioxidant activity of anthocyanins and non-anthocyanin flavonoids in blackberry from different growth stages[J]. Foods, 2022, 11(18): 2902.doi: 10.3390/foods11182902.
doi: 10.3390/foods11182902
URL
|
[8] |
Sun W, Sun S Y, Xu H, Wang Y H, Chen Y R, Xu X R, Yi Y, Ju Z G. Characterization of two key flavonoid 3-O-glycosyltransferases involved in the formation of flower color in Rhododendron delavayi[J]. Frontiers in Plant Science, 2022, 13: 863482.doi: 10.3389/fpls.2022.863482.
doi: 10.3389/fpls.2022.863482
URL
|
[9] |
Sicker D, Frey M, Schulz M, Gierl A. Role of natural benzoxazinones in the survival strategy of plants[J]. International Review of Cytology, 2000, 198: 319-346.doi: 10.1016/s0074-7696(00)98008-2.
doi: 10.1016/s0074-7696(00)98008-2
|
[10] |
Morita Y, Ishiguro K, Tanaka Y, Iida S, Hoshino A. Spontaneous mutations of the UDP-glucose: Flavonoid 3-O-glucosyltransferase gene confers pale- and dull-colored flowers in the Japanese and common morning glories[J]. Planta, 2015, 242(3): 575-587.doi: 10.1007/s00425-015-2321-5.
doi: 10.1007/s00425-015-2321-5
URL
|
[11] |
Hall D, Yuan X X, Murata J, De Luca V.Molecular cloning and biochemical characterization of the UDP-glucose: Flavonoid 3-O-glucosyltransferase from concord grape( Vitis labrusca)[J]. Phytochemistry, 2012, 74: 90-99.doi: 10.1016/j.phytochem.2011.10.007.
doi: 10.1016/j.phytochem.2011.10.007
URL
|
[12] |
doi: 10.3321/j.issn:0578-1752.2004.12.043
|
|
Wang H C, Huang X M, Hu G B, Huang H B. Studies on the relationship between anthocyanin biosynthesis and related enzymes in Litchi pericarp[J]. Scientia Agricultura Sinica, 2004, 37(12): 2028-2032.
|
[13] |
Boss P K, Davies C, Robinson S P. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L.cv Shiraz grape berries and the implications for pathway regulation[J]. Plant Physiology, 1996, 111(4): 1059-1066.doi: 10.1104/pp.111.4.1059.
doi: 10.1104/pp.111.4.1059
pmid: 12226348
|
[14] |
Montanari S, Thomson S, Cordiner S, Günther C S, Miller P, Deng C H, McGhie T, Knäbel M, Foster T, Turner J, Chagné D, Espley R. High-density linkage map construction in an autotetraploid blueberry population and detection of quantitative trait loci for anthocyanin content[J]. Frontiers in Plant Science, 2022, 13: 965397.doi: 10.3389/fpls.2022.965397.
doi: 10.3389/fpls.2022.965397
URL
|
[15] |
Offen W, Martinez-Fleites C, Yang M, Kiat-Lim E, Davis B G, Tarling C A, Ford C M, Bowles D J, Davies G J. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification[J]. The EMBO Journal, 2006, 25(6): 1396-1405.doi: 10.1038/sj.emboj.7600970.
doi: 10.1038/sj.emboj.7600970
URL
|
[16] |
Hans J, Brandt W, Vogt T. Site-directed mutagenesis and protein 3D-homology modelling suggest a catalytic mechanism for UDP-glucose-dependent betanidin 5-O-glucosyltransferase from Dorotheanthus bellidiformis[J]. The Plant Journal, 2004, 39(3): 319-333.doi: 10.1111/j.1365-313X.2004.02133.x.
doi: 10.1111/j.1365-313X.2004.02133.x
URL
|
[17] |
Kubo A, Arai Y, Nagashima S, Yoshikawa T. Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation[J]. Archives of Biochemistry and Biophysics, 2004, 429(2): 198-203.doi: 10.1016/j.abb.2004.06.021.
doi: 10.1016/j.abb.2004.06.021
pmid: 15313223
|
[18] |
Sun Y Y, Luo M L, Ge W Y, Zhou X, Zhou Q, Wei B D, Cheng S C, Ji S J. Phenylpropanoid metabolism in relation to peel browning development of cold-stored Nanguo pears[J]. Plant Science, 2022, 322: 111363.doi: 10.1016/j.plantsci.2022.111363.
doi: 10.1016/j.plantsci.2022.111363
URL
|
[19] |
Kaneko M, Hwang E I, Ohnishi Y, Horinouchi S. Heterologous production of flavanones in Escherichia coli: Potential for combinatorial biosynthesis of flavonoids in bacteria[J]. Journal of Industrial Microbiology and Biotechnology, 2003, 30(8): 456-461.doi: 10.1007/s10295-003-0061-1.
doi: 10.1007/s10295-003-0061-1
URL
|
[20] |
Ohta Y, Atsumi G, Yoshida C, Takahashi S, Shimizu M, Nishihara M, Nakatsuka T. Post-transcriptional gene silencing of the chalcone synthase gene CHS causes corolla lobe-specific whiting of Japanese gentian[J]. Planta, 2021, 255(1):29.doi: 10.1007/s00425-021-03815-w.
doi: 10.1007/s00425-021-03815-w
|
[21] |
Sun W, Shen H, Xu H, Tang X X, Tang M, Ju Z G, Yi Y. Chalcone isomerase a key enzyme for anthocyanin biosynthesis in Ophiorrhiza japonica[J]. Frontiers in Plant Science, 2019, 10: 865.doi: 10.3389/fpls.2019.00865.
doi: 10.3389/fpls.2019.00865
URL
|
[22] |
Dai M J, Kang X R, Wang Y Q, Huang S, Guo Y Y, Wang R F, Chao N, Liu L. Functional characterization of flavanone 3-hydroxylase(F3H)and its role in anthocyanin and flavonoid biosynthesis in mulberry[J]. Molecules, 2022, 27(10): 3341.doi: 10.3390/molecules27103341.
doi: 10.3390/molecules27103341
|
[23] |
Wang X, Chen X P, Luo S X, Ma W, Li N, Zhang W W, Tikunov Y, Xuan S X, Zhao J J, Wang Y H, Zheng G D, Yu P, Bai Y L, Bovy A, Shen S X. Discovery of a DFR gene that controls anthocyanin accumulation in the spiny Solanum group: roles of a natural promoter variant and alternative splicing[J]. The Plant Journal, 2022, 111(4): 1096-1109.doi: 10.1111/tpj.15877.
doi: 10.1111/tpj.15877
URL
|
[24] |
doi: 10.7668/hbnxb.2014.S1.002
|
|
Zhao Z C, Chen Y Y, Gao A P, Huang J F, Dang Z G, Luo R X, Zhang B. Cloning and sequence analysis of ANS gene from mango[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(S1):6-9.
|
[25] |
Chung S W, Yu D J, Oh H D, Ahn J H, Huh J H, Lee H J. Transcriptional regulation of abscisic acid biosynthesis and signal transduction, and anthocyanin biosynthesis in Bluecrop highbush blueberry fruit during ripening[J]. PLoS One, 2019, 14(7): e0220015.doi: 10.1371/journal.pone.0220015.
doi: 10.1371/journal.pone.0220015
URL
|
[26] |
隋昕. 香雪兰UDP-葡萄糖:类黄酮3-O-葡萄糖基转移酶基因的克隆及其功能鉴定[D]. 长春: 东北师范大学, 2011.
|
|
Sui X. Cloning and functional identification of UDP- glucose: Flavonoid 3-O- glucosyltransferase gene from Ceylon[D]. Changchun: Northeast Normal University, 2011.
|
[27] |
Tsukaya H, Ohshima T, Naito S, Chino M, Komeda Y. Sugar-dependent expression of the CHS-a gene for Chalcone synthase from Petunia in transgenic Arabidopsis[J]. Plant Physiology, 1991, 97(4): 1414-1421.doi: 10.1104/pp.97.4.1414.
doi: 10.1104/pp.97.4.1414
pmid: 16668565
|
[28] |
Lo Piero A R, Puglisi I, Rapisarda P, Petrone G. Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage[J]. Journal of Agricultural and Food Chemistry, 2005, 53(23): 9083-9088.doi: 10.1021/jf051609s.
doi: 10.1021/jf051609s
pmid: 16277406
|
[29] |
An J P, Zhang X W, Liu Y J, Wang X F, You C X, Hao Y J. ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple[J]. Journal of Experimental Botany, 2021, 72(4): 1460-1472.doi: 10.1093/jxb/eraa525.
doi: 10.1093/jxb/eraa525
URL
|
[30] |
魏颖超. ABA与乙烯对泰山早霞苹果果实成熟的影响[D]. 泰安: 山东农业大学, 2013.
|
|
doi: 10.7666/d.Y2303368. Wei Y C.Effects of ABA and ethylene on fruit ripening of Taishanzaoxia apple[D]. Taian: Shandong Agricultural University, 2013.
doi: 10.7666/d
|
[31] |
Shan X Y, Zhang Y S, Peng W, Wang Z L, Xie D X. Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis[J]. Journal of Experimental Botany, 2009, 60(13): 3849-3860.doi: 10.1093/jxb/erp223.
doi: 10.1093/jxb/erp223
URL
|
[32] |
Ji X H, Wang Y T, Zhang R, Wu S J, An M M, Li M, Wang C Z, Chen X L, Zhang Y M, Chen X S. Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple( Malus sieversii f. niedzwetzkyana)[J]. Plant Cell, Tissue and Organ Culture( PCTOC), 2015, 120(1): 325-337.doi: 10.1007/s11240-014-0609-y.
doi: 10.1007/s11240-014-0609-y
URL
|
[33] |
doi: 10.3864/j.issn.0578-1752.2018.07.012
|
|
An J P, Song L Q, Zhao L L, You C X, Wang X F, Hao Y J. Cloning and functional characterization of an auxin response factor gene MdARF5 in apple[J]. Scientia Agricultura Sinica, 2018, 51(7): 1345-1352.
|
[34] |
Yan H L, Pei X N, Zhang H, Li X, Zhang X X, Zhao M H, Chiang V L, Sederoff R R, Zhao X Y. MYB-mediated regulation of anthocyanin biosynthesis[J]. International Journal of Molecular Sciences, 2021, 22(6): 3103.doi: 10.3390/ijms22063103.
doi: 10.3390/ijms22063103
URL
|