| [1] |
Chen H J, Liu X T, Mao J D, Qi X Y, Chen S S, Feng J, Jin Y Y, Ahmad M Z, Sun M, Deng Y M. Comparative transcriptomic and physiological analyses reveal the key role of abscisic acid in Hydrangea macrophylla responding to Corynespora cassiicola[J]. BMC Plant Biology, 2024, 24(1):1066.doi: 10.1186/s12870-024-05770-6.
|
| [2] |
Feng J, Chen S S, Chen H J, Dai L J, Qi X Y, Ahmad M Z, Gao K, Qiu S, Jin Y Y, Deng Y M. Metabolomics reveals a key role of salicylic acid in embryo abortion underlying interspecific hybridization between Hydrangea macrophylla and H.arborescens[J]. Plant Cell Reports, 2024, 43(10):248.doi: 10.1007/s00299-024-03341-5.
|
| [3] |
Qi X Y, Chen S S, Wang H D, Feng J, Chen H J, Qin Z Y, Deng Y M. Comparative physiology and transcriptome analysis reveals that chloroplast development influences silver-white leaf color formation in Hydrangea macrophylla var. Maculata[J]. BMC Plant Biology, 2022, 22(1):345.doi: 10.1186/s12870-022-03727-1.
|
| [4] |
|
|
Deng Y M, Han Y, Qi X Y, Sun X B, Jia X P, Chen S S. Analysis on germplasm resources of species in Hydrangea Linn.and comparisons on their flower color variability and resistance to leaf-spot disease[J]. Journal of Plant Resources and Environment, 2018, 27(4):90-100.
|
| [5] |
Gong J Y, Wang Y, Xue C, Wu L S, Sheng S, Wang M, Peng J Q, Cao S J. Regulation of blue infertile flower pigmentation by WD40 transcription factor HmWDR68 in Hydrangea macrophylla'forever summer'[J]. Molecular Biology Reports, 2024, 51(1):328.doi: 10.1007/s11033-024-09287-x.
|
| [6] |
Ma J F, Hiradate S, Nomoto K, Iwashita T, Matsumoto H. Internal detoxification mechanism of Al in Hydrangea(identification of Al form in the leaves)[J]. Plant Physiology, 1997, 113(4):1033-1039.doi: 10.1104/pp.113.4.1033.
URL
|
| [7] |
Chen H X, Wang X, Xu L. Identification and bioinformatics analysis of ABC transporter gene family in Hydrangea under aluminum stress[J]. Molecular Plant Breeding, 2022:13.doi: 10.5376/mpb.2022.13.0031.
|
| [8] |
Ito D, Shinkai Y, Kato Y, Kondo T, Yoshida K. Chemical studies on different color development in blue-and red-colored sepal cells of Hydrangea macrophylla[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(5):1054-1059.doi: 10.1271/bbb.80831.
|
| [9] |
Chen S S, Qi X Y, Feng J, Chen H J, Qin Z Y, Wang H D, Deng Y M. Biochemistry and transcriptome analyses reveal key genes and pathways involved in high-aluminum stress response and tolerance in Hydrangea sepals[J]. Plant Physiology and Biochemistry, 2022, 185:268-278.doi: 10.1016/j.plaphy.2022.06.008.
URL
|
| [10] |
Qin Z Y, Chen S S, Feng J, Chen H J, Qi X Y, Wang H D, Deng Y M. Identification of aluminum-activated malate transporters (ALMT) family genes in Hydrangea and functional characterization of HmALMT5/9/11 under aluminum stress[J]. PeerJ, 2022,10:e13620.doi: 10.7717/peerj.13620.
|
| [11] |
王晓玥, 陈双双, 齐香玉, 冯景, 陈慧杰, 孙明, 邓衍明. 绣球花铝转运蛋白 HmALMT11的生物信息学及其表达特性分析[J]. 华北农学报, 2024, 39(4):94-101.doi: 10.7668/hbnxb.20194790.
|
|
Wang X Y, Chen S S, Qi X Y, Feng J, Chen H J, Sun M, Deng Y M. Bioinformatics analysis and expression profiling of the aluminum transporter HmALMT11 in Hydrangea macrophylla[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(4):94-101.
|
| [12] |
Ahmad M Z, Chen S S, Qi X Y, Feng J, Chen H J, Liu X T, Sun M, Deng Y M. Genome wide analysis of HMA gene family in Hydrangea macrophylla and characterization of HmHMA2 in response to aluminum stress[J]. Plant Physiology and Biochemistry, 2024,216:109182.doi: 10.1016/j.plaphy.2024.109182.
|
| [13] |
Negishi T, Oshima K, Hattori M, Kanai M, Mano S, Nishimura M, Yoshida K. Tonoplast-and plasma membrane-localized aquaporin-family transporters in blue Hydrangea sepals of aluminum hyperaccumulating plant[J]. PLoS One, 2012, 7(8):e43189.doi: 10.1371/journal.pone.0043189.
URL
|
| [14] |
Feller A, Machemer K, Braun E L, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. The Plant Journal, 2011, 66(1):94-116.doi: 10.1111/j.1365-313x.2010.04459.x.
|
| [15] |
|
|
Zhang Q Y, Liu X, Yu J Q, Hu D G, Hao Y J. Molecular cloning and functional characterization of MdMYB73 reveals its involvement in salt tolerance in apple callus and Arabidopsis[J]. Acta Horticulturae Sinica, 2016, 43(11):2073-2080.
|
| [16] |
Kim J H, Nguyen N H, Jeong C Y, Nguyen N T, Hong S W, Lee H. Loss of the R2R3 MYB,AtMyb73,causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis[J]. Journal of Plant Physiology, 2013, 170(16):1461-1465.doi: 10.1016/j.jplph.2013.05.011.
URL
|
| [17] |
|
|
Pang X, Zhao Y T, Fan J T, Xing H X, Zhang J, Xing J H, Dong J G. AtMYB73 gene positively regulates the response to salt stress in Arabidopsis[J]. Journal of Agricultural University of Hebei, 2017, 40(5):44-47,59.
|
| [18] |
Zhao K, Fan G F, Yao W J, Cheng Z H, Zhou B R, Jiang T B. PagMYB73 enhances salt stress tolerance by regulating reactive oxygen species scavenging and osmotic maintenance in poplar[J]. Industrial Crops and Products, 2024,208:117893.doi: 10.1016/j.indcrop.2023.117893.
|
| [19] |
Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. The Plant Cell, 2002, 14(8):1675-1690.doi: 10.1105/tpc.003483.
URL
|
| [20] |
Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Jun K W, Hayashizaki Y, Shinozaki K. Monitoring the expression profiles of 7000 Arabidopsis genes under drought,cold and high-salinity stresses using a full-length cDNA microarray[J]. The Plant Journal, 2002, 31(3):279-292.doi: 10.1046/j.1365-313x.2002.01359.x.
|
| [21] |
Wu X B, Simpson S A, Youngblood R C, Liu X F, Scheffler B E, Rinehart T A, Alexander L W, Hulse-Kemp A M. Two haplotype-resolved genomes reveal important flower traits in bigleaf hydrangea ( Hydrangea macrophylla) and insights into Asterid evolution[J]. Horticulture Research, 2023, 10(12):uhad217.doi: 10.1093/hr/uhad217.
|
| [22] |
陈双双, 齐香玉, 冯景, 陈慧杰, 王华娣, 秦紫艺, 邓衍明. 铝处理下绣球实时荧光定量PCR内参基因筛选及验证[J]. 华北农学报, 2021, 36(2):9-18.doi: 10.7668/hbnxb.20191716.
|
|
Chen S S, Qi X Y, Feng J, Chen H J, Wang H D, Qin Z Y, Deng Y M. Selection and validation of reference genes for qRT-PCR gene expression analysis in Hydrangea macrophylla under aluminum treatment[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(2):9-18.
|
| [23] |
|
|
Liang F, Zhang Y, Yuan X Y, Kang Y Y, Wu Z, Xu S P. Analysis of MYB transcription factors related to cold stress response in Phalaenopsis based on RNA-sequencing[J]. Journal of Henan Agricultural Sciences, 2024, 53(8):108-117.
|
| [24] |
|
|
Huang H, Qu X J, Liu J H, Peng Z W. Expression patterns of genes of four transcription factor families in different ploidy rice under salt-alkali stress[J]. Journal of Henan Agricultural Sciences, 2023, 52(6):22-33.
|
| [25] |
Panda B B, Achary V M M. Mitogen-activated protein kinase signal transduction and DNA repair network are involved in aluminum-induced DNA damage and adaptive response in root cells of Allium cepa L.[J]. Frontiers in Plant Science, 2014,5:256.doi: 10.3389/fpls.2014.00256.
|
| [26] |
Liu X W, Lin Y M, Liu D Q, Wang C X, Zhao Z Q, Cui X M, Liu Y, Yang Y. MAPK-mediated auxin signal transduction pathways regulate the malic acid secretion under aluminum stress in wheat ( Triticum aestivum L.)[J]. Scientific Reports, 2017,7:1620.doi: 10.1038/s41598-017-01803-3.
|
| [27] |
D'Angelo C, Weinl S, Batistic O, Pandey G K, Cheong Y H, Sch ltke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J. Alternative complex formation of the Ca 2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis[J]. The Plant Journal, 2006, 48(6):857-872.doi: 10.1111/j.1365-313x.2006.02921.x.
|
| [28] |
Sawaki Y, Iuchi S, Kobayashi Y, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H. STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities[J]. Plant Physiology, 2009, 150(1):281-294.doi: 10.1104/pp.108.134700.
URL
|
| [29] |
Lu Z J, Tian Z, Yang Z Y, Yin X Y, Dong R. Comparative transcriptomic analysis reveals coordinated mechanisms of different genotypes of common vetch root in response to Al stress[J]. Environmental and Experimental Botany, 2023,213:105450.doi: 10.1016/j.envexpbot.2023.105450.
|
| [30] |
Pan W H, Shen J Q, Zheng Z Z, Yan X, Shou J X, Wang W X, Jiang L X, Pan J W. Overexpression of the Tibetan Plateau annual wild barley ( Hordeum spontaneum) HsCIPKs enhances rice tolerance to heavy metal toxicities and other abiotic stresses[J]. Rice, 2018, 11(1):51.doi: 10.1186/s12284-018-0242-1.
|
| [31] |
Huang D J, Mao Y X, Guo G Y, Ni D J, Chen L. Genome-wide identification of PME gene family and expression of candidate genes associated with aluminum tolerance in tea plant ( Camellia sinensis)[J]. BMC Plant Biology, 2022, 22(1):306.doi: 10.1186/s12870-022-03686-7.
pmid: 35751024
|
| [32] |
Yang X Y, Zeng Z H, Yan J Y, Fan W, Bian H W, Zhu M Y, Yang J L, Zheng S J. Association of specific pectin methylesterases with Al-induced root elongation inhibition in rice[J]. Physiologia Plantarum, 2013, 148(4):502-511.doi: 10.1111/ppl.12005.
URL
|
| [33] |
Huang D J, Gong Z M, Chen X, Wang H J, Tan R R, Mao Y X. Transcriptomic responses to aluminum stress in tea plant leaves[J]. Scientific Reports, 2021,11:5800.doi: 10.1038/s41598-021-85393-1.
|
| [34] |
Jia C E, Han S J, Karthik S, Kim H J, Kim J H, Yun H R, Chung Y S, Sung S, Heo J B. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) partially inhibits the transcriptional activation of FT by MYB73 and regulates flowering in Arabidopsis[J]. The Plant Journal, 2024, 120(1):187-198.doi: 10.1111/tpj.16980.
URL
|
| [35] |
Jing W K, Gong F F, Liu G Q, Deng Y L, Liu J Q, Yang W J, Sun X M, Li Y H, Gao J P, Zhou X F, Ma N. Petal size is controlled by the MYB73/TPL/HDA19-miR159-CKX6 module regulating cytokinin catabolism in Rosa hybrida[J]. Nature Communications, 2023,14:7106.doi: 10.1038/s41467-023-42914-y.
|