[1] |
Albuquerque A, Neves J A, Redondeiro M, Laranjo M, F lix M R, Freitas A, Tirapicos J L, Martins J M. Long term betaine supplementation regulates genes involved in lipid and cholesterol metabolism of two muscles from an obese pig breed[J]. Meat Science, 2017, 124:25-33. doi: 10.1016/j.meatsci.2016.10.012.
doi: S0309-1740(16)30426-0
pmid: 27806261
|
[2] |
Dixon L K, Chapman D A G, Netherton C L, Upton C. African swine fever virus replication and genomics[J]. Virus Research, 2013, 173(1):3-14. doi: 10.1016/j.virusres.2012.10.020.
doi: 10.1016/j.virusres.2012.10.020
URL
|
[3] |
Guinat C, Reis A L, Netherton C L, Goatley L, Pfeiffer D U, Dixon L. Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission[J]. Veterinary Research, 2014, 45(1):93. doi: 10.1186/s13567-014-0093-8.
doi: 10.1186/s13567-014-0093-8
URL
|
[4] |
Simões M, Martins C, Ferreira F. Host DNA damage response facilitates African swine fever virus infection[J]. Veterinary Microbiology, 2013, 165(1/2):140-147. doi: 10.1016/j.vetmic.2013.01.007.
doi: 10.1016/j.vetmic.2013.01.007
URL
|
[5] |
Palgrave C J, Gilmour L, Lowden C S, Lillico S G, Mellencamp M A, Whitelaw C B A. Species-specific variation in RELA underlies differences in NF-κB activity:A potential role in African swine fever pathogenesis[J]. Journal of Virology, 2011, 85(12):6008-6014. doi: 10.1128/JVI.00331-11.
doi: 10.1128/JVI.00331-11
URL
|
[6] |
Galindo I, Hernaez B, Díaz-Gil G, Escribano J M, Alonso C. A179L,a viral Bcl-2 homologue,targets the core Bcl-2 apoptotic machinery and its upstream BH3 activators with selective binding restrictions for Bid and Noxa[J]. Virology, 2008, 375(2):561-572. doi: 10.1016/j.virol.2008.01.050.
doi: 10.1016/j.virol.2008.01.050
URL
|
[7] |
Nogal M L, González de Buitrago G, Rodríguez C, Cubelos B, Carrascosa A L, Salas M L, Revilla Y. African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells[J]. Journal of Virology, 2001, 75(6):2535-2543. doi: 10.1128/JVI.75.6.2535-2543.2001.
doi: 10.1128/JVI.75.6.2535-2543.2001
pmid: 11222676
|
[8] |
Zhang F Q, Moon A, Childs K, Goodbourn S, Dixon L K. The African swine fever virus DP71L protein recruits the protein phosphatase 1 catalytic subunit to dephosphorylate eIF2alpha and inhibits CHOP induction but is dispensable for these activities during virus infection[J]. Journal of Virology, 2010, 84(20):10681-10689. doi: 10.1128/JVI.01027-10.
doi: 10.1128/JVI.01027-10
URL
|
[9] |
Wilhelm D, Bernard P. Non-coding RNA and the reproductive system[M]. Dordrecht: Springer Netherlands, 2016. doi: 10.1007/978-94-017-7417-8.
doi: 10.1007/978-94-017-7417-8
|
[10] |
Marcinowski L, Tanguy M, Krmpotic A, Rädle B, Lisnic' V J, Tuddenham L, Chane-Woon-Ming B, Ruzsics Z, Erhard F, Benkartek C, Babic M, Zimmer R, Trgovcich J, Koszinowski U H, Jonjic S, Pfeffer S, Dölken L. Degradation of cellular mir-27 by a novel,highly abundant viral transcript is important for efficient virus replication in vivo[J]. PLoS Pathogens, 2012, 8(2):e1002510. doi: 10.1371/journal.ppat.1002510.
doi: 10.1371/journal.ppat.1002510
|
[11] |
Backes S, Shapiro J S, Sabin L R, Pham A M, Reyes I, Moss B, Cherry S, TenOever B R. Degradation of host microRNAs by poxvirus poly(A)polymerase reveals terminal RNA methylation as a protective antiviral mechanism[J]. Cell Host & Microbe, 2012, 12(2):200-210. doi: 10.1016/j.chom.2012.05.019.
doi: 10.1016/j.chom.2012.05.019
|
[12] |
Buck A H, Ivens A, Gordon K, Craig N, Houzelle A, Roche A, Turnbull N, Beard P M. Quantitative analysis of microRNAs in Vaccinia virus infection reveals diversity in their susceptibility to modification and suppression[J]. PLoS One, 2015, 10(7):e0131787. doi: 10.1371/journal.pone.0131787.
doi: 10.1371/journal.pone.0131787
|
[13] |
Dunn L E M, Ivens A, Netherton C L, Chapman D A G, Beard P M. Identification of a functional small noncoding RNA of African swine fever virus[J]. Journal of Virology, 2020, 94(21):e01515-e01520. doi: 10.1128/JVI.01515-20.
doi: 10.1128/JVI.01515-20
|
[14] |
Núñez-Hernández F, Vera G, Sánchez A, Rodríguez F, Nez J I. African swine fever virus does not express viral microRNAs in experimentally infected pigs[J]. BMC Veterinary Research, 2018, 14(1):268. doi: 10.1186/s12917-018-1601-2.
doi: 10.1186/s12917-018-1601-2
pmid: 30176871
|
[15] |
doi: 10.1016/j.virusres.2012.09.014
pmid: 23041356
|
[16] |
Ju X H, Li F, Li J R, Wu C Y, Xiang G T, Zhao X M, Nan Y C, Zhao D M, Ding Q. Genome-wide transcriptomic analysis of highly virulent African swine fever virus infection reveals complex and unique virus host interaction[J]. Veterinary Microbiology, 2021, 261:109211. doi: 10.1016/j.vetmic.2021.109211.
doi: 10.1016/j.vetmic.2021.109211
|
[17] |
Takahashi S. Triglyceride rich lipoprotein-LPL-VLDL receptor and lp(a)-VLDL receptor pathways for macrophage foam cell formation[J]. Journal of Atherosclerosis and Thrombosis, 2017, 24(6):552-559. doi: 10.5551/jat.rv17004.
doi: 10.5551/jat.RV17004
pmid: 28428482
|
[18] |
Senga S, Kobayashi N, Kawaguchi K, Ando A, Fujii H. Fatty acid-binding protein 5(FABP5)promotes lipolysis of lipid droplets,de novo fatty acid(FA)synthesis and activation of nuclear factor-kappa B(NF-κB)signaling in cancer cells[J]. Biochimica et Biophysica Acta (BBA)- Molecular and Cell Biology of Lipids, 2018, 1863(9):1057-1067. doi: 10.1016/j.bbalip.2018.06.010.
doi: 10.1016/j.bbalip.2018.06.010
|
[19] |
Chen X M, Johns D C, Geiman D E, Marban E, Dang D T, Hamlin G, Sun R G, Yang V W. Krüppel-like factor 4(gut-enriched krüppel-like factor)inhibits cell proliferation by blocking G1/S progression of the cell cycle[J]. Journal of Biological Chemistry, 2001, 276(32):30423-30428. doi: 10.1074/jbc.M101194200.
doi: 10.1074/jbc.M101194200
pmid: 11390382
|
[20] |
Brown J R, Nigh E, Lee R J, Ye H, Thompson M A, Saudou F, Pestell R G, Greenberg M E. Fos family members induce cell cycle entry by activating cyclin D1[J]. Molecular and Cellular Biology, 1998, 18(9):5609-5619. doi: 10.1128/MCB.18.9.5609.
doi: 10.1128/MCB.18.9.5609
pmid: 9710644
|
[21] |
Mukaida N, Sasaki S I, Baba T. CCL4 Signaling in the tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1231:23-32. doi: 10.1007/978-3-030-36667-4_3.
doi: 10.1007/978-3-030-36667-4_3
pmid: 32060843
|
[22] |
Núñez-Hernández F, Pérez L J, Muñoz M, Vera G, Accensi F, Sánchez A, Rodríguez F, Núñez J I. Differential expression of porcine microRNAs in African swine fever virus infected pigs:A proof-of-concept study[J]. Virology Journal, 2017, 14(1):198. doi: 10.1186/s12985-017-0864-8.
doi: 10.1186/s12985-017-0864-8
pmid: 29041944
|
[23] |
doi: 10.16437/j.cnki.1007-5038.2021.04.024
|
|
Zhang Z B, Zhang S S, Han K X, Li X Y, Wen X X, Han L M. Effects of microRNA in African swine fever[J]. Progress in Veterinary Medicine, 2021, 42(4):120-123.
|
[24] |
Castrillón-Betancur J C, Urcuqui-Inchima S. Overexpression of miR-484 and miR-744 in Vero cells alters Dengue virus replication[J]. Memorias Do Instituto Oswaldo Cruz, 2017, 112(4):281-291. doi: 10.1590/0074-02760160404.
doi: S0074-02762017000400281
pmid: 28327787
|
[25] |
Lagos D, Pollara G, Henderson S, Gratrix F, Fabani M, Milne R S B, Gotch F, Boshoff C. miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator[J]. Nature Cell Biology, 2010, 12(5):513-519. doi: 10.1038/ncb2054.
doi: 10.1038/ncb2054
pmid: 20418869
|
[26] |
Horita K, Kurosaki H, Nakatake M, Ito M, Kono H, Nakamura T. Long noncoding RNA UCA1 enhances sensitivity to Oncolytic vaccinia virus by sponging miR-18a/miR-182 and modulating the Cdc42/filopodia axis in colorectal cancer[J]. Biochemical and Biophysical Research Communications, 2019, 516(3):831-838. doi: 10.1016/j.bbrc.2019.06.125.
doi: 10.1016/j.bbrc.2019.06.125
URL
|
[27] |
Liang H W, Liu M H, Yan X, Zhou Y, Wang W G, Wang X L, Fu Z, Wang N, Zhang S Y, Wang Y B, Zen K, Zhang C Y, Hou D X, Li J, Chen X. miR-193a-3p functions as a tumor suppressor in lung cancer by down-regulating ERBB4[J]. The Journal of Biological Chemistry, 2015, 290(2):926-940. doi: 10.1074/jbc.M114.621409.
doi: 10.1074/jbc.M114.621409
URL
|
[28] |
Singaravelu R, Ahmed N, Quan C, Srinivasan P, Ablenas C J, Roy D G, Pezacki J P. A conserved miRNA-183 cluster regulates the innate antiviral response[J]. Journal of Biological Chemistry, 2019, 294(51):19785-19794. doi: 10.1074/jbc.RA119.010858.
doi: 10.1074/jbc.RA119.010858
pmid: 31694919
|
[29] |
Sardar R, Satish D, Gupta D. Identification of novel SARS-CoV-2 drug targets by host microRNAs and transcription factors co-regulatory interaction network analysis[J]. Frontiers in Genetics, 2020, 11:571274. doi: 10.3389/fgene.2020.571274.
doi: 10.3389/fgene.2020.571274
|
[30] |
Keppner S, Proschak E, Schneider G, Spänkuch B. Fate of primary cells at the G1/S boundary after polo-like kinase 1 inhibition by SBE13[J]. Cell Cycle, 2011, 10(4):708-720. doi: 10.4161/cc.10.4.14898.
doi: 10.4161/cc.10.4.14898
pmid: 21301227
|
[31] |
Chen J J, Du G H, Chang Y Z, Wang Y F, Shi L J, Mi J, Tang G Y. Downregulated miR-27b promotes keratinocyte proliferation by targeting PLK2 in oral lichen planus[J]. Journal of Oral Pathology & Medicine, 2019, 48(4):326-334. doi: 10.1111/jop.12826.
doi: 10.1111/jop.12826
URL
|
[32] |
Pfeiffer J, Tarbashevich K, Bandemer J, Palm T, Raz E. Rapid progression through the cell cycle ensures efficient migration of primordial germ cells -The role of Hsp90[J]. Developmental Biology, 2018, 436(2):84-93. doi: 10.1016/j.ydbio.2018.02.014.
doi: S0012-1606(17)30563-8
pmid: 29477339
|
[33] |
Dong Z W, Yang P, Qiu X J, Liang S, Guan B, Yang H S, Li F F, Sun L, Liu H L, Zou G H, Zhao K W. KCNQ1OT1 facilitates progression of non-small-cell lung carcinoma via modulating miRNA-27b-3p/HSP90AA1 axis[J]. Journal of Cellular Physiology, 2019, 234(7):11304-11314. doi: 10.1002/jcp.27788.
doi: 10.1002/jcp.27788
pmid: 30471108
|
[34] |
Liang D N, Zhang Z N. microRNA-27b-3p inhibits the proliferation and invasion of cutaneous squamous cell carcinoma by targeting EGFR and MMP-13[J]. Oncology Letters, 2021, 22(4):729. doi: 10.3892/ol.2021.12990.
doi: 10.3892/ol.2021.12990
pmid: 34429769
|
[35] |
Sun Y, Xu T, Cao Y W, Ding X Q. Antitumor effect of miR-27b-3p on lung cancer cells via targeting Fzd7[J]. European Review for Medical and Pharmacological Sciences, 2017, 21(18):4113-4123. doi: 10.2147/OTT.S196865.
doi: 13427
pmid: 29028088
|
[36] |
Duan X Y, Zhao M L, Li X Q, Gao L, Cao H, Wang Y Q, Zheng S J. Gga-miR-27b-3p enhances type I interferon expression and suppresses infectious bursal disease virus replication via targeting cellular suppressors of cytokine signaling 3 and 6(SOCS3 and 6)[J]. Virus Research, 2020, 281:197910. doi: 10.1016/j.virusres.2020.197910.
doi: 10.1016/j.virusres.2020.197910
|