[1] |
Brede A D, Sun S C. Diversity of turfgrass germplasm in the Asian Pacific rim countries and potential for reducing genetic vulnerability[J]. Crop Science, 1995, 35(2):317-321. doi: 10.2135/cropsci1995.0011183X003500020004x.
doi: 10.2135/cropsci1995.0011183X003500020004x
URL
|
[2] |
doi: 10.11733/j.issn.1007-0435.1997.01.007
|
|
Liu J X, He S N, Chen S L. Morphologicol type and turfgrass quality of zoysiagrass in East China[J]. Acta Agrestia Sinica, 1997, 5(1):42-47.
|
[3] |
陈莹, 何八斤, 周禾, 张剑岷. 结缕草属种质资源评述[J]. 草业科学, 2008, 25(1):106-112.
|
|
Chen Y, He B J, Zhou H, Zhang J M. A review for germplasm resources in Zoysia genus[J]. Pratacultural Science, 2008, 25(1):106-112.
|
[4] |
doi: 10.3969/j.issn.1000-5846.2000.04.020
|
|
Wang Y, Zhang M. Comparison study of anatomy structure of Zoysia japonica and Poa pratensis related with characteristics of drought and tramp resistance and elasticity[J]. Journal of Liaoning University (Natural Sciences Edition), 2000, 27(4):371-375.
|
[5] |
刘莉, 胡涛, 傅金民. 中国沿海地区野生结缕草属分布现状调查与耐盐性评价[J]. 草业科学, 2012, 29(8):1250-1255.
|
|
Liu L, Hu T, Fu J M. China littoral region wild Zoysia distribution and salt tolerance evaluation[J]. Pratacultural Science, 2012, 29(8):1250-1255.
|
[6] |
刘俊祥, 孙振元, 巨关升, 韩蕾, 钱永强. 结缕草对重金属镉的生理响应[J]. 生态学报, 2011, 31(20):6149-6156.
|
|
Liu J X, Sun Z Y, Ju G S, Han L, Qian Y Q. Physiological response of Zoysia japonica to Cd2+[J]. Acta Ecologica Sinica, 2011, 31(20):6149-6156.
|
[7] |
doi: 10.11686/cyxb20140421
|
|
Li X, Wu Y J, Sun L X. Growth and physiological responses of three warm-season turfgrasses to lead stress[J]. Acta Prataculturae Sinica, 2014, 23(4):171-180.
|
[8] |
doi: 10.3969/j.issn.1001-0629.2010.10.004
|
|
Hu L Z, Guan X J, Yang Z J, Chen L X. Comprehensive evaluation on turf characteristics of Zoysia japonica[J]. Pratacultural Science, 2010, 27(10):23-26.
|
[9] |
邵伯琴, 施桂芬, 李彦. 青岛胶州湾地区结缕草属种质资源的保护和开发利用[J]. 中国草地, 1997(6):61-64.
|
|
Shao B Q, Shi G F, Li Y. Protection, developinent and utilization of germplasm resonrces of lawngrass in the Jiaozhou-bay area of Qingdao[J]. Grassland of China, 1997(6):61-64.
|
[10] |
董厚德, 宫莉君. 中国结缕草生态学及其资源开发与应用[M]. 北京: 中国林业出版社, 2001.
|
|
Dong H D, Gong L J. Ecology of Zoysia japonica and the exploitation and application of its resources in China[M]. Beijing: China Forestry Publishing House, 2001.
|
[11] |
doi: 10.3969/j.issn.1001-0629.2003.07.027
|
|
Ma J, Meng J, Cai J G. Discussion on application of turfgrass species in lawn of south of the Yangtze River[J]. Pratacultural Science, 2003, 20(7):90-93.
|
[12] |
doi: 10.3321/j.issn:1004-5759.2004.03.019
|
|
Guo H L, Liu J X. Zoysia grass breeding progress summary[J]. Acta Prataculturae Sinica, 2004, 13(3):106-112.
|
[13] |
doi: 10.3969/j.issn.1007-0435.2003.03.010
|
|
Li Y, Xie X J, Xuan J P, Liu J X. Assessment of cold-tolerance of China's Zoysia spp.[J]. Acta Agrestia Sinica, 2003, 11(3):240-245.
|
[14] |
doi: 10.3321/j.issn:1004-5759.2007.01.008
|
|
Hu H G, Liu J X, Xuan J P, He Q, Cheng X L, Guo A G. Assessment of drought resistance of Zoysia[J]. Acta Prataculturae Sinica, 2007, 16(1):47-51.
|
[15] |
doi: 10.3969/j.issn.1000-2561.2017.07.013
|
|
Huang C Q, Liu G D, Bai C J. Evaluation of salt tolerance among 41 Zoysia accessions[J]. Chinese Journal of Tropical Crops, 2017, 38(7):1260-1266.
|
[16] |
Tanaka H, Hirakawa H, Kosugi S, Nakayama S, Ono A, Watanabe A, Hashiguchi M, Gondo T, Ishigaki G, Muguerza M, Shimizu K, Sawamura N, Inoue T, Shigeki Y, Ohno N, Tabata S, Akashi R, Sato S. Sequencing and comparative analyses of the genomes of Zoysia grasses[J]. DNA Research, 2016, 23(2):171-180. doi: 10.1093/dnares/dsw006.
doi: 10.1093/dnares/dsw006
URL
|
[17] |
Xuan J P, Song Y F, Zhang H X, Liu J X, Guo Z R, Hua Y L. Comparative proteomic analysis of the stolon cold stress response between the C4 perennial grass species Zoysia japonica and Zoysia metrella[J]. PLoS One, 2013, 8(9):e75705. doi: 10.1371/journal.pone.0075705.
doi: 10.1371/journal.pone.0075705
URL
|
[18] |
Wei S J, Du Z L, Gao F, Ke X, Li J, Liu J X, Zhou Y J. Global transcriptome profiles of Meyer zoysiagrass in response to cold stress[J]. PLoS One, 2015, 10(6):e0131153. doi: 10.1371/journal.pone.0131153.
doi: 10.1371/journal.pone.0131153
URL
|
[19] |
Long S X, Yan F Y, Yang L, Sun Z Y, Wei S J. Responses of Manila grass( Zoysia matrella)to chilling stress:From transcriptomics to physiology[J]. PLoS One, 2020, 15(7):e0235972. doi: 10.1371/journal.pone.0235972.
doi: 10.1371/journal.pone.0235972
URL
|
[20] |
Wang R, Wang X, Liu K, Zhang X J, Zhang L Y, Fan S J. Comparative transcriptome analysis of halophyte Zoysia macrostachya in response to salinity stress[J]. Plants, 2020, 9(4):458. doi: 10.3390/plants9040458.
doi: 10.3390/plants9040458
URL
|
[21] |
Wang J J, An C, Guo H L, Yang X Y, Chen J B, Zong J Q, Li J J, Liu J X. Physiological and transcriptomic analyses reveal the mechanisms underlying the salt tolerance of Zoysia japonica Steud[J]. BMC Plant Biology, 2020, 20(1):114. doi: 10.1186/s12870-020-02330-6.
doi: 10.1186/s12870-020-02330-6
URL
|
[22] |
Wang Z, Zhang F, Xuan J P, Zong J Q, Liu J X. Isolation and expression profiles of the ZjDREB1 gene encoding a DRE-binding transcription factor from zoysiagrass( Zoysia japonica)[J]. The Journal of Horticultural Science and Biotechnology, 2012, 87(1):77-83. doi: 10.1080/14620316.2012.11512834.
doi: 10.1080/14620316.2012.11512834
URL
|
[23] |
冯婉倩, 马礼鹏, 蒋笑笑, 张红, 李玥, 韦善君. 结缕草转录因子基因 ZjDREB1.2的克隆及胁迫下的表达分析[J]. 北方园艺, 2018(18): 75-85. doi: 10.11937/bfyy.20180246.
doi: 10.11937/bfyy.20180246
|
|
Feng W Q, Ma L P, Jiang X X, Zhang H, Li Y, Wei S J. Cloning and expression analysis of a transcription factor gene ZjDREB1.2 from Zoysia[J]. Northern Horticulture, 2018(18):75-85.
|
[24] |
Feng W Q, Li J, Long S X, Wei S J. A DREB1 gene from zoysiagrass enhances Arabidopsis tolerance to temperature stresses without growth inhibition[J]. Plant Science, 2019, 278:20-31. doi: 10.1016/j.plantsci.2018.10.009.
doi: 10.1016/j.plantsci.2018.10.009
URL
|
[25] |
Teng K, Tan P H, Guo W E, Yue Y S, Fan X F, Wu J Y. Heterologous expression of a novel Zoysia japonica C 2 H 2 zinc finger gene, ZjZFN1,improved salt tolerance in Arabidopsis[J]. Frontiers in Plant Science, 2018, 9:1159. doi: 10.3389/fpls.2018.01159.
doi: 10.3389/fpls.2018.01159
pmid: 30154810
|
[26] |
Zuo Z F, Kang H G, Park M Y, Jeong H, Sun H J, Song P S, Lee H Y. Zoysia japonica MYC type transcription factor ZjICE1 regulates cold tolerance in transgenic Arabidopsis[J]. Plant Science:an International Journal of Experimental Plant Biology, 2019, 289:110254. doi: 10.1016/j.plantsci.2019.110254.
doi: 10.1016/j.plantsci.2019.110254
URL
|
[27] |
Zuo Z F, Kang H G, Hong Q C, Park M Y, Sun H J, Kim J, Song P S, Lee H Y. A novel basic helix-loop-helix transcription factor,ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging[J]. Plant Molecular Biology, 2020, 102(4/5):447-462. doi: 10.1007/s11103-019-00957-0.
doi: 10.1007/s11103-019-00957-0
URL
|
[28] |
张胤冰, 孙鑫博, 樊波, 韩烈保, 张雪, 袁建波, 许立新. 结缕草 ZjNAC 基因的克隆与表达分析[J]. 草业学报, 2016, 25(4):239-245. doi: 10.11686/cyxb2015453.
doi: 10.11686/cyxb2015453
|
|
Zhang Y B, Sun X B, Fan B, Han L B, Zhang X, Yuan J B, Xu L X. Cloning and expression of ZjNAC from Zoysia japonica[J]. Acta Prataculturae Sinica, 2016, 25(4):239-245.
|
[29] |
Chen Y, Li L L, Zong J Q, Chen J B, Guo H L, Guo A G, Liu J X. Heterologous expression of the halophyte Zoysia matrella H +-pyrophosphatase gene improved salt tolerance in Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 2015, 91:49-55. doi: 10.1016/j.plaphy.2015.04.004.
doi: 10.1016/j.plaphy.2015.04.004
pmid: 25874657
|
[30] |
doi: 10.7668/hbnxb.20190692
|
|
Yan F Y, Nong J X, Suo Z H, Wei S J. Expression patterns and stress resistance function identification of Zjlea3 gene from Zoysia japonica[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(3):55-62.
|
[31] |
doi: 10.13417/j.gab.040.000349
|
|
Long S X, Nong J X, Wang L, Suo Z H, Wei S J. Cloning and preliminary function and analysis of ZjLEA2 from Zoysia japonica[J]. Genomics and Applied Biology, 2021, 40(1):349-356.
|
[32] |
Teng K, Tan P H, Xiao G Z, Han L B, Chang Z H, Chao Y H. Heterologous expression of a novel Zoysia japonica salt-induced Glycine-rich RNA-binding protein gene, ZjGRP, caused salt sensitivity in Arabidopsis[J]. Plant Cell Reports, 2017, 36(1):179-191. doi: 10.1007/s00299-016-2068-x.
doi: 10.1007/s00299-016-2068-x
pmid: 27796490
|
[33] |
张雪, 孙鑫博, 樊波, 张胤冰, 韩烈保, 许立新. 结缕草 ZjCSD基因的克隆及表达分析[J]. 草业学报, 2017, 26(2):102-110. doi: 10.11686/cyxb2016260.
doi: 10.11686/cyxb2016260
|
|
Zhang X, Sun X B, Fan B, Zhang Y B, Han L B, Xu L X. Molecular cloning and expression analysis of ZjCSD from Zoysia japonica[J]. Acta Prataculturae Sinica, 2017, 26(2):102-110.
|
[34] |
樊波, 孙鑫博, 张胤冰, 张雪, 袁建波, 张海兰, 肖维阳, 韩烈保, 许立新. 结缕草 ZjCCS基因的克隆与表达分析[J]. 草地学报, 2016, 24(2):447-452. doi: 10.11733/j.issn.1007-0435.2016.02.030.
doi: 10.11733/j.issn.1007-0435.2016.02.030
|
|
Fan B, Sun X B, Zhang Y B, Zhang X, Yuan J B, Zhang H L, Xiao W Y, Han L B, Xu L X. Cloning and expression analysis of ZjCCS from Zoysia japonica[J]. Acta Agrestia Sinica, 2016, 24(2):447-452.
|
[35] |
Thomashow M F. Role of cold-responsive genes in plant freezing tolerance[J]. Plant Physiology, 1998, 118(1):1-8. doi: 10.1104/pp.118.1.1.
doi: 10.1104/pp.118.1.1
pmid: 9733520
|
[36] |
doi: 10.11931/guihaia.gxzw202007053
|
|
Geng X D, Zhou Y, Yu M H, Wang C Z, Qian J L. Effects of NaCl stress on growth and related physiological indexes in Hemerocallis minor[J]. Guihaia, 2021, 41(6):930-936.
|
[37] |
doi: 10.3969/j.issn.0254-5071.2011.11.031
|
|
Zhang J, Hou X G, Wang J Y, Hu B Y. Isolation,identification and thermotolerance of yeast from high temperature Daqu[J]. China Brewing, 2011, 30(11):112-114.
|
[38] |
Danyluk J, Houde M, Rassart É, Sarhan F. Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant Gramineae species[J]. FEBS Letters, 1994, 344(1): 20-24. doi: 10.1016/0014-5793(94)00353-X.
doi: 10.1016/0014-5793(94)00353-X
pmid: 7910142
|
[39] |
Graether S P, Boddington K F. Disorder and function:A review of the dehydrin protein family[J]. Frontiers in Plant Science, 2014, 5:576. doi: 10.3389/fpls.2014.00576.
doi: 10.3389/fpls.2014.00576
pmid: 25400646
|
[40] |
Zhu B, Choi D W, Fenton R, Close T J. Expression of the barley dehydrin multigene family and the development of freezing tolerance[J]. Molecular & General Genetics, 2000, 264(1/2):145-153. doi: 10.1007/s004380000299.
doi: 10.1007/s004380000299
|
[41] |
Lee S C, Lee M Y, Kim S J, Jun S H, An G, Kim S R. Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1,in rice(Oryza sativa L.)[J]. Molecules and Cells, 2005, 19(2):212-218.
|
[42] |
Lin C T, Guo W W, Everson E, Thomashow M F. Cold acclimation in Arabidopsis and wheat A response associated with expression of related genes encoding Boiling-stable polypeptides[J]. Plant Physiology, 1990, 94(3):1078-1083. doi: 10.1104/pp.94.3.1078.
doi: 10.1104/pp.94.3.1078
pmid: 16667799
|
[43] |
Zhang J Y, Wu F, Yan Q, John U P, Cao M S, Xu P, Zhang Z S, Ma T T, Zong X F, Li J, Liu R J, Zhang Y F, Zhao Y F, Kanzana G, Lü Y Y, Nan Z B, Spangenberg G, Wang Y R. The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability[J]. Plant Biotechnology Journal, 2021, 19(3):532-547. doi: 10.1111/pbi.13483.
doi: 10.1111/pbi.13483
URL
|
[44] |
doi: 10.3969/j.issn.0451-0712.2003.11.028
|
|
Xu X G, Wang J P, Yang D S, Hu T X, Chen J R. Study on adaptability of Eragrostis grass planting on effloresce rock slope[J]. Highway, 2003, 48(11):106-108.
|
[45] |
Li M Y, Liu J X, Hao J N, Feng K, Duan A Q, Yang Q Q, Xu Z S, Xiong A S. Genomic identification of AP2/ERF transcription factors and functional characterization of two cold resistance-related AP2/ERF genes in celery( Apium graveolens L.)[J]. Planta, 2019, 250(4):1265-1280. doi: 10.1007/s00425-019-03222-2.
doi: 10.1007/s00425-019-03222-2
URL
|
[46] |
Ganeshan S, Vitamvas P, Fowler D B, Chibbar R N. Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat( Triticum aestivum L.)during an extended low temperature acclimation regimen[J]. Journal of Experimental Botany, 2008, 59(9):2393-2402. doi: 10.1093/jxb/ern112.
doi: 10.1093/jxb/ern112
URL
|
[47] |
Yang Y F, Al-Baidhani H H J, Harris J, Riboni M, Li Y, Mazonka I, Bazanova N, Chirkova L, Sarfraz Hussain S, Hrmova M, Haefele S, Lopato S, Kovalchuk N. DREB/CBF expression in wheat and barley using the stress-inducible promoters of HD-Zip I genes:Impact on plant development,stress tolerance and yield[J]. Plant Biotechnology Journal, 2020, 18(3):829-844. doi: 10.1111/pbi.13252.
doi: 10.1111/pbi.13252
URL
|
[48] |
Soltész A, Smedley M, Vashegyi I, Galiba G, Harwood W, Vágújfalvi A. Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance[J]. Journal of Experimental Botany, 2013, 64(7):1849-1862. doi: 10.1093/jxb/ert050.
doi: 10.1093/jxb/ert050
URL
|
[49] |
Houde M, Dallaire S, N'Dong D, Sarhan F. Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves[J]. Plant Biotechnology Journal, 2004, 2(5):381-387. doi: 10.1111/j.1467-7652.2004.00082.x.
doi: 10.1111/j.1467-7652.2004.00082.x
URL
|
[50] |
Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat[J]. The Plant Cell, 1998, 10(4):623-638. doi: 10.1105/tpc.10.4.623.
doi: 10.1105/tpc.10.4.623
pmid: 9548987
|