[1] Kovács B,Puskás-Preszner A,Huzsvai L,et al. Effect of molybdenum treatment on molybdenum concentration and nitrate reduction in maize seedlings[J]. Plant Physiology and Biochemistry,2015,96(6):38-44.
[2] Elrys A S,Abdo A E,Desoky E M. Potato tubers contamination with nitrate under the influence of nitrogen fertilizers and spray with molybdenum and salicylic acid[J]. Environmental Science and Pollution Research International,2018,25(7):7076-7089.
[3] 秦世玉,孙学成,胡承孝,等. 钼肥对甘蓝型油菜薹期碳氮代谢的影响[J]. 华北农学报,2016,31(4):227-232.
[4] Tejada-Jiménez M,Chamizo-Ampudia A,Galván A,et al. Molybdenum metabolism in plants[J]. Metallomics:Integrated Biometal Science,2013,5(9):1191-1203.
[5] Duan G,Hakoyama T,Kamiya T,et al. LjMOT1,a high-affinity molybdate transporter from Lotus japonicus,is essential for molybdate uptake,but not for the delivery to nodules[J]. The Plant Journal,2017,90(6):1108-1119.
[6] Kaiser B N,Gridley K L,Ngaire Brady J,et al. The role of molybdenum in agricultural plant production[J]. Annals of Botany,2005,96(5):745-754.
[7] Kumchai J,Huang J Z,Lee C Y,et al. Proline partially overcomes excess molybdenum toxicity in cabbage seedlings grown in vitro[J]. Genetics and Molecular Research,2013,12(4):5589-5601.
[8] Marelja Z,Leimkuhler S,Missirlis F. Iron sulfur and molybdenum cofactor enzymes regulate the drosophila life cycle by controlling cell metabolism[J]. Frontiers in Physiology,2018,9:50.
[9] Kaufholdt D,Baillie C K,Meinen R A,et al. The Molybdenum cofactor biosynthesis network:in vivo Protein-protein interactions of an actin associated Multi-protein complex[J]. Frontiers in Plant Science,2017,8:1946.
[10] Mendel R R. The molybdenum cofactor[J]. Journal of Biological Chemistry,2013,288(19):13165-13172.
[11] 秦世玉,孙学成,胡承孝,等. 硫硒钨对钼酸盐吸收及钼酸盐转运子的影响[J]. 华北农学报,2015,30(5):232-238.
[12] Tejada-Jiménez M,Gil-Díez P,León-Mediavilla J,et al. Medicago truncatula Molybdate Transporter type 1(MtMOT1.3)is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency[J]. New Phytologist,2017,216(4):1223-1235.
[13] Tomatsu H,Takano J,Takahashi H,et al. An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(47):18807-18812.
[14] Gasber A,Klaumann S,Trentmann O,et al. Identification of an Arabidopsis solute carrier critical for intracellular transport and inter-organ allocation of molybdate[J]. Plant Biology,2011,13(5):710-718.
[15] Tejada-Jimenez M,Galvan A,Fernandez E. Algae and humans share a molybdate transporter[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(16):6420-6425.
[16] Wu T,Kamiya T,Yumoto H,et al. An Arabidopsis thaliana copper-sensitive mutant suggests a role of phytosulfokine in ethylene production[J]. Journal of Experimental Botany,2015,66(13):3657-3667.
[17] Neff M M,Chory J. Genetic interactions between phytochromeA,phytochrome B,and cryptochrome 1 during Arabidopsis development[J]. Plant Physiology,1998,118(1):27-35.
[18] Buchanan B B,Gruissem W,Jones R L. Biochemistry and Molecular Biology of plants[C]. Rockville:American Society of Plant Physiologists,2000.
[19] Howles P A,Birch R J,Collings D A,et al. A mutation in an Arabidopsis ribose 5-phosphate isomerase reduces cellulose synthesis and is rescued by exogenous uridine[J]. Plant Journal,2006,48(4):606-618.
[20] Eicks M,Maurino V,Knappe S,et al. The plastidic pentose phosphate translocator represents a Link between the cytosolic and the plastidic pentose phosphate pathways in plants[J]. Plant Physiology,2002,128(2):512-522.
[21] Kruger N J,Von Schaewen A. The oxidative pentose phosphate pathway:structure and organisation[J]. Current Opinion in Plant Biology,2003,6(3):236-246. |