[1] Bieleski R L. Phosphate pools, phosphate transport, and phosphate availability[J]. Annual Review of Plant Biology, 1973, 24(1):225-252.doi:10.1146/annurev.pp.24.060173.001301. [2] Zhu C Q, Zhu X F, Hu A Y, Wang C, Wang B, Dong X Y, Shen R F. Differential effects of nitrogen forms on cell wall phosphorus remobilization are mediated by nitric oxide, pectin content, and phosphate transporter expression[J]. Plant Physiology, 2016, 171(2):1407-1417. doi:10.1104/pp.16.00176. [3] Misson J, Raghothama K G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M C. A genome-wide transcriptional analysis using Arabidopsis thaliana affymetrix gene chips determined plant responses to phosphate deprivation[J]. Proceedings of the National Academy of Sciences USA, 2005, 102(33):11934-11939. doi:10.1073/pnas.0505266102. [4] Mǖller R, Morant M, Jarmer H, Nilsson L, Nielsen T H. Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism[J]. Plant Physiology, 2007, 143(1):156-171. doi:10.1104/pp.106.090167. [5] Wei K F, Pan S, Li Y. Functional characterization of maize C2H2 zinc-finger gene family[J]. Plant Molecular Biology Reporter, 2016, 34(4):761-776. doi:10.1007/s11105-015-0958-7. [6] Shi H T,Wang X, Ye T T, Chen F F, Deng J, Yang P F, Zhang Y S, Chan Z L. The Cysteine2/Histidine2-type transcription factor zine of Arabidopsis thaliana 6 modulates biotic and abiotic stress responses by activating salicylic Acid-related genes and C-repeat-binding factor genes in Arabidopsis[J]. Plant Physiology, 2014, 165(3):1367-1379. doi:10.1104/pp.114.242404. [7] Zang D D, Li H Y, Xu H Y, Zhang W H, Zhang Y M, Shi X X, Wang Y C. An Arabidopsis zinc finger protein increases abiotic stress tolerance by regulating sodium and potassium homeostasis, reactive oxygen species scavenging and osmotic potential[J]. Frontiers in Plant Science, 2016, 24(7):1272.doi:10.3389/fpls.2016.01272. [8] Yin M Z, Wang Y P, Zhang L H, Li J Z, Quan W L, Yang L, Wang Q F, Chan Z L. The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress[J]. Journal of Experimental Botany, 2017, 68(11):2991-3005. doi:10.1093/jxb/erx157. [9] Wang F B, Tong W J, Zhu H, Kong W L, Peng R H, Liu Q C, Yao Q H. A novel Cys2/His2zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis[J]. Planta, 2016, 243(3):783-797. doi:10.1007/s00425-015-2443-9. [10] Devaiah B N, Nagarajna V K, Raghothama K G. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zing finger transcription factor ZAT6[J]. Plant Physiology, 2007, 145(1):147-159. doi:10.1104/pp.107.101691. [11] Ding W W, Wang Y X, Fang W B, Gao S, Li X J, Xiao K. TaZAT8, a C2H2-ZFP type transcription factor gene in wheat, plays critical roles in mediating tolerance to Pi deprivation through regulating P acquisition, ROS homeostasis and root system establishment[J]. Physiologia Plantarum, 2016, 158(3):297-311. doi:10.1111/ppl.12467. [12] Han F, Chen H, Li X J, Yang M F, Liu G S, Shen S H.A comparative proteomic analysis of rice seedlings under various high-temperature stresses[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2009, 1794(11):1625-1634. doi:10.1016/j.bbapap.2009.07.013. [13] Schiltz S, Gallardo K, Huart M, Negroni L, Sommerer N, Burstin J. Proteome reference maps of vegetative tissues in pea. an investigation of nitrogen mobilization from leaves during seed filling[J]. Plant Physiology, 2004, 135(4):2241-2260. doi:10.1104/pp.104.041947. [14] Amir R. Current understanding of the factors regulating methionine content in vegetative tissues of higher plants[J]. Amino Acids, 2010, 39(4):917-931. doi:10.1007/s00726-010-0482-x. [15] Peled M B, Griffith C L, Doering T L. Functional cloning and characterization of a UDP-glucuronic acid decarboxylase:the pathogenic fungus Cryptococcus neoformans elucidates UDP-xylose synthesis[J]. Proceedings of the National Academy of Sciences of the USA, 2001, 98(21):12003-12008. doi:10.1073/pnas.211229198. [16] Zhang X H, Rao X L, Shi H T, Li R J, Lu Y T. Overexpression of a cytosolic glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice[J]. Plant Cell, Tissue and Organ Culture, 2011, 107(1):1-11. doi:10.1007/s11240-011-9950-6. [17] Fait A, Fromm H, Walter D, Galili G, Fernie A R. Highway or byway:the metabolic role of the GABA shunt in plants[J]. Trends in Plant Science, 2008, 13(1):14-19. doi:10.1016/j.tplants.2007.10.005. [18] Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno M J, Alcobendas R, Artlip T, Hernandez J A. Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress[J]. Journal of Experimental Botany, 2011, 62(8):2599-2613. doi:10.1093/jxb/erq432. [19] Novo E, Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis[J]. Fibrogenesis & Tissue Repair, 2008, 1(1):5. doi:10.1186/1755-1536-1-5. [20] Guo Y Y, Song Y H, Zheng H X, Zhang Y, Guo J R, Sui N. NADP-malate dehydrogenase of sweet sorghum improves salt tolerance of Arabidopsis thaliana[J]. Journal of Agricultural and Food Chemistry, 2018, 66(24):5992-6002.doi:10.1021/acs.jafc.8b02159. [21] Hýsková V D, Miedzińska L, Dobrá J, Vankova R, Ryšlavá H. Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress[J]. Journal of Plant Physiology, 2014, 171(5):19-25. doi:10.1016/j.jplph.2013.10.017. [22] Liu S K, Cheng Y X, Zhang X X, Guan Q J, Nishiuchi S, Hase K, Takano T. Expression of an NADP-malic enzyme gene in rice (Oryza sativa L.) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance[J]. Plant Molecular Biology, 2007, 64(1-2):49-58. doi:10.1007/s11103-007-9133-3. [23] Cheng Y X, Long M. A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis[J]. Biotechnology Letters, 2007, 29(7):1129-1134. doi:10.1007/s10529-007-9347-0. [24] Leng X P, Liu D, Zhao M Z, Sun X, Li Y, Mu Q, Zhu X D, Li P Y, Fang J G. Genome-wide identification and analysis of FK506-binding protein family gene family in strawberry (Fragaria ananassa)[J]. Gene, 2014, 534(2):390-399. doi:10.1016/j.gene.2013.08.056. [25] Nigam N, Singh A, Sahi C, Chandramouli A, Grover A. SUMO-conjugating enzyme (Sce) and FK506-binding protein (FKBP) encoding rice (Oryza sativa L.) genes:genome-wide analysis, expression studies and evidence for their involvement in abiotic stress response[J]. Molecular Genetics and Genomics, 2008, 279(4):371-383. doi:10.1007/s00438-008-0318-5. [26] Vstün S, Bartetzko V, Börnke F. The Xanthomonas campestris type Ⅲ effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence[J]. PLoS Pathogens, 2013, 9(6):e1003427.doi:10.1371/journal.ppat.1003427. [27] Cui F, Liu L J, Zhao Q Z, Zhang Z H, Li Q L, Lin B Y, Wu Y R, Tang S Y, Xie Q. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance[J]. The Plant Cell, 2012, 24(1):233-244. doi:10.1105/tpc.111.093062. [28] Ying Y H, Yue W H, Wang S D, Li S, Wang M, Zhao Y, Wang C, Mao C Z, Whelan J, Shou H X. Two h-type thioredoxins interact with the E2 ubiquitin conjugase PHO2 to fine-tune phosphate homeostasis in rice[J]. Plant Physiology, 2017, 173(1):812-824. doi:10.1104/pp.16.01639. |