[1] |
Cheng Y C, Zhang D J, Lu Z Y, Ye X S, Wang J G, Sun P, Zhang B W. Isolation and characterization of microsatellite loci for Prunus mongolica (Rosaceae)[J]. Applications in Plant Sciences, 2018, 6(6): e01158. doi: 10.1002/aps3.1158.
URL
|
[2] |
Jiang L, Chen Y, Bi D, Cao Y P, Tong J C. Deciphering evolutionary dynamics of WRKY I genes in Rosaceae species[J]. Frontiers in Ecology and Evolution, 2022, 9: 801490. doi: 10.3389/fevo.2022.801490.
URL
|
[3] |
Kang C Y, Yao J L, Liu Z C, Han Y P. Editorial: Rosaceae fruit development and quality[J]. Frontiers in Plant Science, 2021, 12: 837300. doi: 10.3389/fpls.2021.837300.
URL
|
[4] |
Li M Z, Xiao Y W, Mount S, Liu Z C. An atlas of genomic resources for studying Rosaceae fruits and ornamentals[J]. Frontiers in Plant Science, 2021, 12: 644881. doi: 10.3389/fpls.2021.644881.
URL
|
[5] |
|
|
Li F F, Ma W Y, Jin L L, Yang Y J. Construction and analysis of molecular phylogenetic tree of Rosaceae plant based on polygalacturonase protein[J]. Molecular Plant Breeding, 2018, 16(19): 6332-6340.
|
[6] |
Lawrence D P, Holland L A, Nouri M T, Travadon R, Abramians A, Michailides T J, Trouillas F P. Molecular phylogeny of Cytospora species associated with canker diseases of fruit and nut crops in California,with the descriptions of ten new species and one new combination[J]. IMA Fungus, 2018, 9(2): 333-369. doi: 10.5598/imafungus.2018.09.02.07.
URL
|
[7] |
|
|
Xie W G. Comprehensive control measures of apple rot[J]. Agricultural Development and Equipments, 2021(1): 215-216.
|
[8] |
Winge P, Brembu T, Kristensen R, Bones A M. Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana[J]. Genetics, 2000, 156(4): 1959-1971.doi: 10.1093/genetics/156.4.1959.
pmid: 11102387
|
[9] |
王爱荣, 陈新, 张冬梅, 陈惠红, 鲁国东, 王宗华. 拟南芥不同ROP蛋白对病原细菌增殖的影响[J]. 福建农林大学学报(自然科学版), 2008(6):610-613.
|
|
Wang A R, Chen X, Zhang D M, Chen H H, Lu G D, Wang Z H. Effects of different ROP proteins in Arabidopsis thaliana on the proliferation of pathogenic bacteria[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2008(6):610-613.
|
[10] |
Berken A, Wittinghofer A. Structure and function of Rho-type molecular switches in plants[J]. Plant Physiology and Biochemistry, 2008, 46(3): 380-393. doi: 10.1016/j.plaphy.2007.12.008.
pmid: 18272378
|
[11] |
Berken A. ROPs in the spotlight of plant signal transduction[J]. Cellular and Molecular Life Sciences CMLS, 2006, 63(21): 2446-2459. doi: 10.1007/s00018-006-6197-1.
URL
|
[12] |
杨叔青. 茄科植物小G蛋白ROPs在抗疫霉菌过程中的功能研究[D]. 呼和浩特: 内蒙古农业大学, 2018.
|
|
Yang S Q. Study on the function of small G protein ROPs in Solanaceae in the process of resistance to Phytophthora infestans[D]. Huhhot: Inner Mongolia Agricultural University, 2018.
|
[13] |
Yang Z, Watson J C. Molecular cloning and characterization of rho,a ras-related small GTP-binding protein from the garden pea[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(18): 8732-8736. doi: 10.1073/pnas.90.18.8732.
pmid: 8378356
|
[14] |
Wu G, Gu Y, Li S, Yang Z. A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets[J]. The Plant Cell, 2001, 13(12): 2841-2856.
|
[15] |
Chen L T, Shiotani K, Togashi T, Miki D, Aoyama M, Wong H L, Kawasaki T, Shimamoto K. Analysis of the rac/rop small GTPase family in rice: expression,subcellular localization and role in disease resistance[J]. Plant and Cell Physiology, 2010, 51(4): 585-595. doi: 10.1093/pcp/pcq024.
URL
|
[16] |
Humphries J A, Vejlupkova Z, Luo A D, Meeley R B, Sylvester A W, Fowler J E, Smith L G. ROP GTPases act with the receptor-like protein PAN1 to polarize asymmetric cell division in maize[J]. The Plant Cell, 2011, 23(6): 2273-2284. doi: 10.1105/tpc.111.085597.
pmid: 21653193
|
[17] |
Potocký M, Pejchar P, Gutkowska M, Jiménez-Quesada M J, Potocká A, de Dios Alché J, Kost B, Žárský V. NADPH oxidase activity in pollen tubes is affected by calcium ions,signaling phospholipids and Rac/Rop GTPases[J]. Journal of Plant Physiology, 2012, 169(16): 1654-1663. doi: 10.1016/j.jplph.2012.05.014.
pmid: 22762791
|
[18] |
ConÉJÉro G, Sauvage F X, Pradal M, Celhay C, Verdeil J L, Galeote V, Tesniere C. Cellular localisation of VvRops and VvRabA5e,small GTPases developmentally regulated in grape berries[J]. Vitis:Journal of Grapevine Research, 2010, 49(4): 193-199.
|
[19] |
Kiirika L M, Bergmann H F, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection[J]. Plant Physiology, 2012, 159(1): 501-516. doi: 10.1104/pp.112.193706.
URL
|
[20] |
Yang S Q, Yan N N, Bouwmeester K, Na R, Zhang Z W, Zhao J. Genome-wide identification of small G protein ROPs and their potential roles in Solanaceous family[J]. Gene, 2020, 753: 144809. doi: 10.1016/j.gene.2020.144809.
URL
|
[21] |
Kenmotsu Y, Asano K, Yamamura Y, Kurosaki F. Cloning and expression of putative rac/rop GTPase genes, Am- rac1 and Am- rac2,involved in methyl jasmonate-induced transcriptional activation of farnesyl diphosphate synthase in cell cultures of Aquilaria microcarpa[J]. Plant Molecular Biology Reporter, 2013, 31(3): 539-546. doi: 10.1007/s11105-012-0529-0.
URL
|
[22] |
Jones M A, Shen J J, Fu Y, Li H, Yang Z B, Grierson C S. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth[J]. The Plant Cell, 2002, 14(4): 763-776. doi: 10.1105/tpc.010359.
URL
|
[23] |
Cao Y R, Li Z G, Chen T, Zhang Z G, Zhang J S, Chen S Y. Overexpression of a tobacco small G protein gene NtRop1 causes salt sensitivity and hydrogen peroxide production in transgenic plants[J]. Science in China Series C:Life Sciences, 2008, 51(5): 383-390. doi: 10.1007/s11427-008-0060-6.
|
[24] |
Park J, Gu Y, Lee Y, Yang Z B, Lee Y. Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation[J]. Plant Physiology, 2004, 134(1): 129-136. doi: 10.1104/pp.103.031393.
URL
|
[25] |
Jin W W, Xu C J, Li X, Zhang B, Wang P, Allan A C, Chen K S. Expression of ROP/RAC GTPase genes in postharvest loquat fruit in association with senescence and cold regulated lignification[J]. Postharvest Biology and Technology, 2009, 54(1): 9-14. doi: 10.1016/j.postharvbio.2009.05.009.
URL
|
[26] |
Moshkov I E, Mur L A J, Novikova G V, Smith A R, Hall M A. Ethylene regulates monomeric GTP-binding protein gene expression and activity in Arabidopsis[J]. Plant Physiology, 2003, 131(4): 1705-1717. doi: 10.1104/pp.014035.
pmid: 12692329
|
[27] |
Hu Z Y, Lei J F, Dai P H, Liu C, Wugalihan A, Liu X D, Li Y. A small gtp-binding protein GhROP3 interacts with GhGGB protein and negatively regulates drought tolerance in cotton( Gossypium hirsutum L.)[J]. Plants, 2022, 11(12): 1580. doi: 10.3390/plants11121580.
|
[28] |
Xu X H, Ye X L, Xing A Q, Wu Z C, Li X Y, Shu Z F, Wang Y H. Camellia sinensis small GTPase gene( CsRAC1)involves in response to salt stress,drought stress and ABA signaling pathway[J]. Gene, 2022, 821: 146318. doi: 10.1016/j.gene.2022.146318.
URL
|
[29] |
Hasi Q, Kakimoto T. ROP interactive partners are involved in the control of cell division patterns in Arabidopsis leaves[J]. Plant and Cell Physiology, 2022, 63(8): 1130-1139. doi: 10.1093/pcp/pcac089.
URL
|
[30] |
Bisht D S, Bhatia V, Bhattacharya R. Improving plant-resistance to insect-pests and pathogens: the new opportunities through targeted genome editing[J]. Seminars in Cell & Developmental Biology, 2019, 96: 65-76. doi: 10.1016/j.semcdb.2019.04.008.
|
[31] |
|
|
Guo Y R, Chen X, Huang J J. Research progress on function of ROP protein in plant growth and development and stress response[J]. Journal of Henan Agricultural Sciences, 2021, 50(11):1-5.
doi: 10.15933/j.cnki.1004?3268.2021.11.001
|
[32] |
Zhang Z W, Zhang X L, Na R, Yang S Q, Tian Z M, Zhao Y, Zhao J. StRac1 plays an important role in potato resistance against Phytophthora infestans via regulating H 2O 2 production[J]. Journal of Plant Physiology, 2020, 253: 153249. doi: 10.1016/j.jplph.2020.153249.
URL
|
[33] |
|
|
Liu J M, Guo C H, Yuan X, Kang C, Quan S W, Niu J X. Genome-wide identification of Dof family genes and expression analysis sepal persistent and abscission in pear[J]. Acta Horticulturae Sinica, 2022, 49(8): 1637-1649.
doi: 10.16420/j.issn.0513-353x.2021-0642
|
[34] |
|
|
Xu J J, Zhu Y Y, Li F, Yang B, Huo D, Xu J. Transcriptome based analysis of the MADS-box transcription factors family in Camellia oleifera based on transcriptome[J]. Molecular Plant Breeding, 2023, 21(5): 1455-1467.
|
[35] |
|
|
Shi P F, Ruan Y, Liu W J, Xu J L, Sun J K, Xiong X, Xu H Q. Molecular characteristics of FABP3 and FABP4 genes and tissue expression analysis of Guanling cattle[J]. Journal of Southern Agriculture, 2022, 53(8): 2281-2293.
|
[36] |
|
|
Mi X M, Li Z Y, Li Y D. Bioinformatics analysis of TLR4 gene associated with bovine resistance[J]. China Dairy Cattle, 2021(4): 1-5.
|
[37] |
Miki D, Itoh R, Shimamoto K. RNA silencing of single and multiple members in a gene family of rice[J]. Plant Physiology, 2005, 138(4): 1903-1913.doi: 10.1104.105.063933.
pmid: 16172097
|
[38] |
周雪慧, 高二林, 王钰静, 李焱龙, 袁道军, 朱龙付. GhROP6通过调控茉莉酸合成与木质素代谢参与棉花抗黄萎病反应[J]. 棉花学报, 2022, 34(2):79-92. doi: 10.1111/jipb.12432.
|
|
Zhou X H, Gao E L, Wang Y J, Li Y L, Yuan D J, Zhu L F. GhROP6 involved in cotton resistance to Verticillium wilt through regulating jasmonic acid synthesis and lignin metabolism[J]. Cotton Science, 2022, 34(2):79-92.
|
[39] |
Schultheiss H, Dechert C, Kogel K H, Hückelhoven R. Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus[J]. The Plant Journal, 2003, 36(5): 589-601. doi: 10.1046/j.1365-313x.2003.01905.x.
URL
|
[40] |
Yang Z B. Small GTPases: versatile signaling switches in plants[J]. The Plant Cell, 2002, 14(1): S375-S388. doi: 10.1105/tpc.001065.
URL
|