[1] |
Ferreira F V, Musumeci M A. Trichoderma as biological control agent:Scope and prospects to improve efficacy[J]. World Journal of Microbiology & Biotechnology, 2021, 37(5):90.doi: 10.1007/s11274-021-03058-7.
doi: 10.1007/s11274-021-03058-7
|
[2] |
Alfiky A, Weisskopf L. Deciphering Trichoderma-plant-pathogen interactions for better development of biocontrol applications[J]. Journal of Fungi, 2021, 7(1):61.doi: 10.3390/jof7010061.
doi: 10.3390/jof7010061
URL
|
[3] |
Kai K J, Mine K, Akiyama K, Ohki S, Hayashi H. Anti-plant viral activity of peptaibols,trichorzins HA Ⅱ,HA Ⅴ,and HA Ⅵ,isolated from Trichoderma harzianum HK-61[J]. Journal of Pesticide Science, 2018, 43(4):283-286.doi: 10.1584/jpestics.D18-039.
doi: 10.1584/jpestics.D18-039
URL
|
[4] |
Gavryushina I A, Georgieva M L, Kuvarina A E, Sadykova V S. Peptaibols as potential antifungal and anticancer antibiotics:Current and foreseeable development(review)[J]. Applied Biochemistry and Microbiology, 2021, 57(5):556-563.doi: 10.1134/S0003683821050070.
doi: 10.1134/S0003683821050070
|
[5] |
Lam Y T H, Ricardo M G, Rennert R, Frolov A, Porzel A, Brandt W, Stark P, Westermann B, Arnold N. Rare glutamic acid methyl ester peptaibols from Sepedonium ampullosporum Damon KSH 534 exhibit promising antifungal and anticancer activity[J]. International Journal of Molecular Sciences, 2021, 22(23):12718.doi: 10.3390/ijms222312718.
doi: 10.3390/ijms222312718
URL
|
[6] |
Shi M, Wang H N, Xie S T, Luo Y, Sun C Y, Chen X L, Zhang Y Z. Antimicrobial peptaibols,novel suppressors of tumor cells,targeted calcium-mediated apoptosis and autophagy in human hepatocellular carcinoma cells[J]. Molecular Cancer, 2010, 9:26.doi: 10.1186/1476-4598-9-26.
doi: 10.1186/1476-4598-9-26
|
[7] |
Song X Y, Shen Q T, Xie S T, Chen X L, Sun C Y, Zhang Y Z. Broad-spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens[J]. FEMS Microbiology Letters, 2006, 260(1):119-125.doi: 10.1111/j.1574-6968.2006.00316.x.
doi: 10.1111/j.1574-6968.2006.00316.x
URL
|
[8] |
Su H N, Chen Z H, Song X Y, Chen X L, Shi M, Zhou B C, Zhao X, Zhang Y Z. Antimicrobial peptide trichokonin VI-induced alterations in the morphological and nanomechanical properties of Bacillus subtilis[J]. PLoS One, 2012, 7(9):e45818.doi: 10.1371/journal.pone.0045818.
doi: 10.1371/journal.pone.0045818
|
[9] |
doi: 10.16768/j.issn.1004-874X.2018.07.013
|
|
Liu T T, Liu N N, Wang G Q. Fungistasis of trichokonins on pathogens in ailanthus seedling in vitro[J]. Guangdong Agricultural Sciences, 2018, 45(7):81-86.
|
[10] |
Zhao P B, Ren A Z, Dong P, Sheng Y S, Chang X, Zhang X S. The antimicrobial peptaibol trichokonin IV promotes plant growth and induces systemic resistance against Botrytis cinerea infection in moth orchid[J]. Journal of Phytopathology, 2018, 166(5):346-354.doi: 10.1111/jph.12692.
doi: 10.1111/jph.12692
URL
|
[11] |
Li H Y, Luo Y, Zhang X S, Shi W L, Gong Z T, Shi M, Chen L L, Chen X L, Zhang Y Z, Song X Y. Trichokonins from Trichoderma pseudokoningii SMF2 induce resistance against Gram-negative Pectobacterium carotovorum subsp.carotovorum in Chinese cabbage[J]. FEMS Microbiology Letters, 2014, 354(1):75-82.doi: 10.1111/1574-6968.12427.
doi: 10.1111/1574-6968.12427
URL
|
[12] |
Luo Y, Zhang D D, Dong X W, Zhao P B, Chen L L, Song X Y, Wang X J, Chen X L, Shi M, Zhang Y Z. Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against Tobacco mosaic virus[J]. FEMS Microbiology Letters, 2010, 313(2):120-126.doi: 10.1111/j.1574-6968.2010.02135.x.
doi: 10.1111/j.1574-6968.2010.02135.x
URL
|
[13] |
doi: 10.3969/j.issn.1671-9352.2006.06.031
|
|
Xie S T, Song X Y, Shi M, Chen X L, Sun C Y, Zhang Y Z. Antimicrobial activities of Trichokonins:Peptaibol-like antimicrobial peptides produced by Trichoderma koningii SMF2[J]. Journal of Shandong University(Natural Science), 2006, 41(6):140-144.
|
[14] |
doi: 10.27214/d.cnki.glcsu.2019
|
|
Sheng Y S. Study on prevention and control of gourd anthracnose by SMF2 in Trichoderma longibrachiatum and its mechanism[D]. Liaocheng: Liaocheng University, 2019:5-8.
|
[15] |
doi: 10.3969/j.issn.1001-8689.2021.05.001
|
|
Wei X Y, Liu X, Yu H W, Guo R F. Advances in biosynthetic gene cluster mining and biosynthesis of microbial non-ribosomal peptides[J]. Chinese Journal of Antibiotics, 2021, 46(5):353-361.
|
[16] |
doi: 10.3321/j.issn.0001-6209.2007.04.034
|
|
Wang S Y. Advances in the study of the mechanism and application of nonribosomal peptide synthetases[J]. Acta Microbiologica Sinica, 2007, 47(4):734-737.
|
[17] |
Grünewald J, Marahiel M A. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides[J]. Microbiology and Molecular Biology Review, 2006, 70(1):121-146.
doi: 10.1128/MMBR.70.1.121-146.2006
URL
|
[18] |
Mootz D H, Marahiel A M. Biosynthetic systems for nonribosomal peptide antibiotic assembly[J]. Current Opinion in Chemical Biology, 1997, 1(4):543-551.doi: 10.1016/S1367-5931(97)80051-8.
doi: 10.1016/S1367-5931(97)80051-8
pmid: 9667890
|
[19] |
doi: 10.3969/j.issn.1001-8689.2018.06.002
|
|
Xu M, Chen X W, Hu C H. Genome mining and natural products research on fungal single modular nonribosomal peptide synthetases[J]. Chinese Journal of Antibiotics, 2018, 43(6):645-653.
|
[20] |
doi: 10.15887/j.cnki.13-1389/r.2013.28.152
|
|
Li H L. Research progress on the structure of non-ribosomal peptide synthase[J]. Chinese Journal of Clinical Rational Drug Use, 2013, 6(28):180-181.
|
[21] |
巩志廷. 长枝木霉SMF2 peptaibols合成酶和蛋白酶基因敲除体系的构建及其peptaibols在植物生长中的功能研究[D]. 济南: 山东大学, 2014.doi: 10.7666/d.Y2598192.
doi: 10.7666/d.Y2598192
|
|
Gong Z T. Gene-knockout system construction of peptaibols synthetase gene and protease gene of Trichoderma longibrachiatum SMF2 and functional study of peptaibols in plant growth[D]. Jinan: Shandong University, 2014.
|
[22] |
Zhou Y R, Song X Y, Li Y, Shi J C, Shi W L, Chen X L, Liu W F, Liu X M, Zhang W X, Zhang Y Z. Enhancing peptaibols production in the biocontrol fungus Trichoderma longibrachiatum SMF2 by elimination of a putative glucose sensor[J]. Biotechnology and Bioengineering, 2019, 116(11):3030-3040.doi: 10.1002/bit.27138.
doi: 10.1002/bit.27138
URL
|
[23] |
Shi J C, Shi W L, Zhou Y R, Chen X L, Zhang Y Z, Zhang X, Zhang W X, Song X Y. The putative methyltransferase TlLAE1 is involved in the regulation of peptaibols production in the biocontrol fungus Trichoderma longibrachiatum SMF2[J]. Frontiers in Microbiology, 2020, 11:1267.doi: 10.3389/fmicb.2020.01267.
doi: 10.3389/fmicb.2020.01267
URL
|