[1] Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky O A, Mieszkin S, Millet L J, Vajna B, Junier P, Bonfante P, Krom B P, Olsson S, van Elsas J D, Wick L Y. Bacterial fungal interactions:ecology, mechanisms and challenges[J]. FEMS Microbiology Reviews, 2018, 42(3):335-352. doi:10.1093/femsre/fuy008. [2] Velmourougane K, Prasanna R, Saxena A K. Agriculturally important microbial biofilms:present status and future prospects[J]. Journal of Basic Microbiology, 2017, 57(7):548-573. doi:10.1002/jobm.201700046. [3] Haq I U, Zhang M Z, Yang P, van Elsas J D. Chapter five-the interactions of bacteria with fungi in soil:emerging concepts[J]. Advances in Applied Microbiology, 2014, 89:185-215. doi:10.1016/B978-0-12-800259-9.00005-6. [4] Haq I U, Calixto R O, Yang P, dos Santos G M P, Barreto-Bergter E, van Elsas J D. Chemotaxis and adherence to fungal surfaces are key components of the behavioral response of Burkholderia terrae BS001 to two selected soil fungi[J]. FEMS Microbiology Ecology, 2016, 92(11):164. doi:10.1093/femsec/fiw164. [5] de Weert S, Kuiper I, Lagendijk E L, Lamers G E, Lugtenberg B J. Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365[J]. Molecular Plant-Microbe Interactions, 2004, 17(11):1185-1191. doi:10.1094/MPMI.2004.17.11.1185. [6] Haq I U, Zwahlen R D, Yang P, van Elsas J D. The response of Paraburkholderia terrae strains to two soil fungi and the potential role of oxalate[J]. Frontiers in Microbiology, 2018, 9:989.doi:10.3389/fmicb.2018.00989. [7] Rudnick M B, van Veen J A, de Boer W. Oxalic acid:a signal molecule for fungus-feeding bacteria of the genus Collimonas?[J]. Environmental Microbiology Reports, 2015, 7(5):709-714. doi:10.1111/1758-2229.12290. [8] Dutton M V, Evans C S. Oxalate production by fungi:its role in pathogenicity and ecology in the soil environment[J]. Canadian Journal of Microbiology, 1996, 42(9):881-895. doi:10.1139/m96-114. [9] Heller A, Witt-Geiges T. Oxalic acid has an additional, detoxifying function in Sclerotinia sclerotiorum pathogenesis[J]. PLoS One, 2013, 8(8):e72292. doi:10.1371/journal.pone.0072292. [10] 张亭,韩建东,李瑾,任海霞,任鹏飞,宫志远.金针菇菌渣提取液对双孢蘑菇蛋白质营养价值的影响[J].河南农业科学, 2016, 45(9):94-97.doi:10.15933/j.cnki.1004-3268.2016.09.019. Zhang T, Han J D, Li J, Ren H X, Ren P F, Gong Z Y. Effects of Flammulina velutipes residue extracts on protein nutritional value of Agaricus bisporus[J]. Journal of Henan Agricultural Sciences, 2016, 45(9):94-97. [11] Morin E, Kohler A, Baker A R, Foulongne-Oriol M, Lombard V, Nagy L G, Ohm R A, Patyshakuliyeva A, Brun A, Aerts A L, Bailey A M, Billette C, Coutinho P M, Deakin G, Doddapaneni H, Floudas D, Grimwood J, Hildén K, Kües U, Labutti K M, Lapidus A, Lindquist E A, Lucas S M, Murat C, Riley R W, Salamov A A, Schmutz J, Subramanian V, W sten H A B, Xu J P, Eastwood D C, Foster G D, Sonnenberg A S, Cullen D, de Vries R P, Lundell T, Hibbett D S, Henrissat B, Burton K S, Kerrigan R W, Challen M P, Grigoriev I V, Martin F. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43):17501-17506. doi:10.1073/pnas.1206847109. [12] Nair N G, Hayes W A. Some effects of casing soil amendments on mushroom cropping[J]. Australian Journal of Agricultural Research, 1975, 26(1):181-188.doi:10.1071/ar9750181. [13] Rainey P B, Cole A L J, Fermor T R, Wood D A. A model system for examining involvement of bacteria in basidiome initiation of Agaricus bisporus[J]. Mycological Research, 1990, 94(2):191-195.doi:10.1016/S0953-7562(09)80612-6. [14] Masaphy S, Levanon D, Tchelet R, Henis Y. Scanning electron microscope studies of interactions between Agaricus bisporus(Lang) Sing hyphae and bacteria in casing soil[J]. Applied and Environmental Microbiology, 1987, 53(5):1132-1137. [15] Cochet N, Gillman A, Lebeault J M. Some biological characteristics of the casing soil and their effect during Agaricus bisporus fructification[J]. Acta Biotechnologica, 1992, 12(5):411-419. doi:10.1002/abio.370120510. [16] Zhang C H, Huang T, Shen C H, Wang X T, Qi Y C, Shen J W, Song A D, Qiu L Y, Ai Y C. Downregulation of ethylene production increases mycelial growth and primordia formation in the button culinary-medicinal mushroom, Agaricus bisporus(Agaricomycetes)[J]. International Journal of Medicinal Mushrooms, 2016, 18(12):1131-1140. doi:10.1615/IntJMedMushrooms.v18.i12.80. [17] Chen S C, Qiu C W, Huang T, Zhou W W, Qi Y C, Gao Y Q, Shen J W, Qiu L Y. Effect of 1-aminocyclopropane-1-carboxylic acid deaminase producing bacteria on the hyphal growth and primordium initiation of Agaricus bisporus[J]. Fungal Ecology, 2013, 6(1):110-118. doi:10.1016/j.funeco.2012.08.003. [18] 程雁,王景冒,张岩,杨潜龙,邱立友.应用1-氨基环丙烷-1-羧酸脱氨酶产生菌提高双孢蘑菇产量[J].河南科学, 2015, 33(10):1750-1755. Cheng Y, Wang J M, Zhang Y, Yang Q L, Qiu L Y. Application of 1-aminocyclopropane-1-carboxylic acid deaminase producing bacterium for increasing the yield of the button mushroom[J]. Henan Science, 2015, 33(10):1750-1755. [19] 董晓雅,周巍巍,张继英,戚元成,高玉千,申进文,邱立友.荧光假单胞菌对食用菌的促生作用及其机理[J].生态学报, 2010, 30(17):4685-4690. Dong X Y, Zhou W W, Zhang J Y, Qi Y C, Gao Y Q, Shen J W, Qiu L Y. The effect of growth promotion and its mechanism on edible fungi by fluorescent Pseudomonas[J]. Acta Ecologica Sinica, 2010, 30(17):4685-4690. [20] 张大飞,戚元成,高玉千,申进文,邱立友.双孢蘑菇覆土出菇机理初步探讨[J].食用菌, 2010, 32(1):9-11,16.doi:10.3969/j.issn.1000-8357.2010.01.004. Zhang D F, Qi Y C, Gao Y Q, Shen J W, Qiu L Y. A primary analysis on the mechanism of casing soil triggering the sporophore formation of Agaricus bisporus[J]. Edible Fungi, 2010, 32(1):9-11,16. [21] Li T, Zhang J, Shen C H, Li H R, Qiu L Y. 1-aminocyclopropane-1-carboxylate:a novel and strong chemoattractant for the plant beneficial rhizobacterium Pseudomonas putida UW4[J]. Molecular Plant-Microbe Interactions, 2019, 32(6):750-759. doi:10.1094/MPMI-11-18-0317-R. [22] Adler J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli[J]. Journal of General Microbiology, 1973, 74(1):77-91. doi:10.1099/00221287-74-1-77. [23] de Weert S, Vermeiren H, Mulders I H, Kuiper I, Hendrickx N, Bloemberg G V, Vanderleyden J, De Mot R, Lugtenberg B J J. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens[J]. Molecular Plant-Microbe Interactions, 2002, 15(11):1173-1180. doi:10.1094/MPMI.2002.15.11.1173. [24] Grimm A C, Harwood C S. Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene[J]. Applied and Environmental Microbiology, 1997, 63(10):4111-4115. [25] Adler J. Chemotaxis in bacteria[J]. Science, 1966, 153(3737):708-716. doi:10.1126/science.153.3737.708. [26] Zhang G, Sun Z H, Ren A, Shi L, Shi D K, Li X B, Zhao M W. The mitogen-activated protein kinase GlSlt2 regulates fungal growth, fruiting body development, cell wall integrity, oxidative stress and ganoderic acid biosynthesis in Ganoderma lucidum[J]. Fungal Genetics and Biology, 2017, 104:6-15. doi:10.1016/j.fgb.2017.04.004. [27] Zhang G, Ren A, Shi L, Zhu J, Jiang A L, Shi D K, Zhao M W. Functional analysis of an APSES transcription factor (GlSwi6) involved in fungal growth, fruiting body development and ganoderic-acid biosynthesis in Ganoderma lucidum[J]. Microbiological Research, 2018, 207:280-288. doi:10.1016/j.micres.2017.12.015. [28] Grewal S I S, Rainey P B. Phenotypic variation of Pseudomonas putida and P. tolaasii affects the chemotactic response to Agaricus bisporus mycelial exudate[J]. Journal of General Microbiology, 1991, 137(12):2761-2768. doi:10.1099/00221287-137-12-2761. [29] Validov S Z, Kamilova F, Lugtenberg B J J. Pseudomonas putida strain PCL1760 controls tomato foot and root rot in stonewool under industrial conditions in a certified greenhouse[J]. Biological Control, 2009, 48(1):6-11. doi:10.1016/j.biocontrol.2008.09.010. [30] Seneviratne G, Jayasinghearachchi H S. Mycelial colonization by bradyrhizobia and azorhizobia[J]. Journal of Biosciences, 2003, 28(2):243-247. doi:10.1007/BF02706224. [31] Zakeel M C M, Safeena M I S. Biofilmed biofertilizer for sustainable agriculture[M]//Ansari R, Mahmood I. Plant health under biotic stress. Singapore:Springer,2019:65-82.doi:10.1007/978-981-13-6040-4_3. [32] Seneviratne G, Weerasekara M L M A W, Seneviratne K A C N, Zavahir J S, Kecskés M L, Kennedy I R. Importance of biofilm formation in plant growth promoting rhizobacterial action[M]//Maheshwari D. Plant growth and health promoting bacteria. Berlin, Heidelberg:Springer, 2010:81-95. doi:10.1007/978-3-642-13612-2_4. [33] Ballhausen M B, Vandamme P, de Boer W. Trait differentiation within the fungus-feeding (mycophagous) bacterial genus Collimonas[J]. PLoS One, 2016, 11(6):e157552. doi:10.1371/journal.pone.0157552. [34] Worrich A, Stryhanyuk H, Musat N, K nig S, Banitz T, Centler F, Frank K, Thullner M, Harms H, Richnow H H, Miltner A, K stner M, Wick L Y. Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments[J]. Nature Communications, 2017, 8:15472. doi:10.1038/ncomms15472. [35] Simon A, Hervé V, Al-Dourobi A, Verrecchia E, Junier P. An in situ inventory of fungi and their associated migrating bacteria in forest soils using fungal highway columns[J]. FEMS Microbiology Ecology, 2017, 93(1):w217. doi:10.1093/femsec/fiw217. [36] Nazir R, Tazetdinova D I, van Elsas J D. Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents[J]. Frontiers in Microbiology, 2014, 5:598. doi:10.3389/fmicb.2014.00598. [37] Balbontin R, Vlamakis H, Kolter R. Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization[J]. Microbial Biotechnology, 2014, 7(6):589-600. doi:10.1111/1751-7915.12182. [38] Benoit I, van den Esker M H, Patyshakuliyeva A, Mattern D J, Blei F, Zhou M M, Dijksterhuis J, Brakhage A A, Kuipers O P, de Vries R P,Kovács Á. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism[J]. Environmental Microbiology, 2015, 17(6):2099-2113. doi:10.1111/1462-2920.12564. [39] Lohberger A, Spangenberg J E, Ventura Y, Bindschedler S, Verrecchia E P, Bshary R, Junier P. Effect of organic carbon and nitrogen on the interactions of Morchella spp. and bacteria dispersing on their mycelium[J]. Frontiers in Microbiology, 2019, 10:124. doi:10.3389/fmicb.2019.00124. [40] Jia Y J, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M, Shoji T, Kanetuna Y, Horita T, Matsui H, Honma M. Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum[J]. Bioscience, Biotechnology, and Biochemistry, 1999, 63(3):542-549. doi:10.1271/bbb.63.542. [41] Medina E, Paredes C, Pérez-Murcia M D, Bustamante M A, Moral R. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants[J]. Bioresource Technology, 2009, 100(18):4227-4232. doi:10.1016/j.biortech.2009.03.055. |