大豆水溶性蛋白是大豆籽粒蛋白质的主要组成部分,其含量是评价大豆品质及衡量其价值的重要指标。以高水溶性蛋白含量(38.70±1.32)%的冀豆12和正常水溶性蛋白含量(32.40±1.08)%的黑豆(ZDD03651)为亲本构建的包含188个家系的F8、F9重组自交系群体为材料,利用双尾法在3个不同选择压力下对籽粒水溶性蛋白含量进行QTL定位研究。结果表明,2年中重组自交家系群体表型均呈现正态性超双亲分离,在30%,20%,10%这3个不同选择压力下共检测到大豆籽粒水溶性蛋白含量相关的QTL 23个,分布在A1、A2、C2、D1b、D2、E、F、H、I、K、L、M和O等13个连锁群中,其中13个QTL增效基因来自冀豆12。2年中在10%的选择压力下同时检测到2个QTL,分别为 qSPC-6-1和qSPC-8-1。其中 qSPC-6-1 的连锁标记为Sat_062,2年中贡献率分别为9.78%和9.66%,增效基因来自冀豆12;qSPC-8-1 的连锁标记为Satt177,2年中贡献率分别为9.78%和7.98%,增效基因来自于黑豆。该结果为分子标记辅助育种及分子克隆提供理论依据。
Water soluble protein is the main component of soybean seed protein,the percentage of water soluble protein is an important index to value measure and quality evaluation.Two tail analysis in three selection pressure(30%,20%,10%)were employed to detect quantitative trait loci(QTL)of soybean soluble protein content using 188 recombination inbred lines(RIL)population derived from a cross between Jidou 12 and Heidou,Jidou 12 has high SPC(38.70±1.32)% and Heidou has low SPC(32.40±1.08)%.As a result,SPC phenotypic was appeared to be normal transgressive segregation distribution.And 23 QTLs were detected in 3 selection pressure(30%,20%,10%),distribution on A1,A2,C2,D1b,D2,E,F,H,I,K,L,M and O linkage group,13 of those favorable genes from Jidou 12.There were 2 QTL qSPC-6-1, qSPC-8-1 were detected by the two years in 10% selection pressure.The linkage marker of qSPC-6-1 was Sat_062,in two years genetic contribution is 9.78% and 9.66% respectively and favorable gene from Jidou12;The linkage marker of qSPC-8-1 was Satt177,in two years genetic contribution is 9.78% and 7.98% respectively and favorable gene from Heidou.These studies provide a theoretical basis for marker-assisted breeding.
[1] Rhee K C.Functionality of soy proteins[A].//Hettiarchchy N A,Ziegler G R(eds)Protein functionality in food systems[C].New York:Marcel Dekker,1994:311-324.
[2] Thanh V H,Shibasaki K.Major proteins of soybean seeds.A straight forward fractionation and their characterization[J].J Agric Food Chem,1976,24:1117-1121.
[3] Malhotra A,Coupland J N.The effect of surfactants on the solubility,zeta potential,and viscosity of soy protein isolates[J].Food Hydrocolloids,2004,18(1):101-108.
[4] Walsh D J,Cleary D,McCarthy E,et al.Modification of the nitrogen solubility properties of soy protein isolate following proteolysis and transglutaminase cross-linking[J].Food Research International,2003,36:677-683.
[5] Wolf W J.Chemical and physical properties of soybean proteins[J].Bakers Digest,1969,43:30-35.
[6] Lu W,Wen Z,Li H ,et al. Identification of the quantitative trait loci(QTL)underlying water soluble protein content in soybean[J].Theoretial and Applied Genetics,2013,126(2):425-433.
[7] Beilinson V,Chen Z,Shoemaker R C,et al.Genomic organization of glycinin genes in soybean[J].Theoretical and Applied Genetics,2002,104(6/7):1132-1140.
[8] Panthee D R,Kwanyuen P,Sams C E,et al.Quantitative trait loci forβ-conglycinin(7S)and glycinin(11S)fractions of soybean storage protein[J].J Am Oil Chem Soc,2004,81:1005-1012.
[9] 刘顺湖,周瑞宝,喻德跃,等.大豆蛋白质有关性状的QTL定位[J].作物学报,2009,35(12):2139-2149.
[10] 孙艳萍.选择基因型作图方法在数量性状基因定位中的有效性研究[D].北京:中国农业科学院,2010.
[11] Soufflet-Freslon V,Gianfranceschi L,Patocchi A, et al. Inheritance studies of apple scab resistance and identification of Rvi14,a new major gene that acts together with other broad-spectrum QTL[J].Genome,2008,51(8):657-667.
[12] Nandi S,Subudhi P K,Senadhira D,et al.Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping[J].Mol Gen Genet,1997,255:1-8.
[13] Merk H L,Ashrafi H,Foolad M R.Selective genotyping to identify late blight resistance genes in an accession of the tomato wild species Solanum Pimpinellifolium [J].Euphytica,2012,187(1):63-75.
[14] Darvasi A,Soller M.Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus[J].Theoretical and Applied Genetics,1992,85(2/3):353-359.
[15] Gallais A,Moreau L,Charcosset A.Detection of marker-QTL associations by studying change in marker frequencies with selection[J].Theoretical and Applied Genetics,2007,114(4):669-681.
[16] Navabi A,Mather D E,Bernier J,et al.QTL detection with bidirectional and unidirectional selective genotyping:marker-based and trait-based analyses[J].Theoretical and Applied Genetics,2009,118(2):347-358.
[17] Sun Y P,Wang J K,Crouch J H,et al.Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement[J].Molecular Breeding,2010,26(3):493-511.
[18] 李卫东,张孟臣.黄淮海夏大豆及品种参数[ M].北京:中国农业科学技术出版社,2006.
[19] 闫龙,冯燕,杨春燕,等.冀豆12遗传背景导入系蛋白、脂肪含量分布特征[J].华北农学报,2012,27(1):87-92.
[20] 陈强,闫龙,杨春燕,等.冀豆12遗传背景下3个回交组合高低蛋白含量后代品系SSR标记分析[J].中国农业科学,2014,47(2):230-239.
[21] 张孟臣,唐晓东.一种大豆水溶性蛋白检测方法[P].中国专利:201110236317.1,2013-7-10.
[22] Kaufinan B,Richards S,Diefig D A.DNA isolation method for high polysaecharide Lesquuerella species[J].Industrial Crops and Products,1999,9(2):111-114.
[23] Cregan P B,Jarvik T,Bush A L,et al.An integrated genetic linkage map of the soybean genome [J].Crop Science,1999,39(5):1464-1490.
[24] Song Q J,Marek L F,Shoemaker R C,et al.A new integrated genetic linkage map of the soybean[J].Theoretical and Applied Genetics,2004,109(1):122-128.
[25] 王涛,杨春燕,赵青松等.两个大豆开花期QTL定位及对农艺性状的影响分析[J].华北农学报,2013,28(2):63-69.
[26] Hallauer A R,Miranda F.Quantitative genetics in Maize Breeding[M].Ames:Iowa State University Press,1981.
[27] Falconer D S.Introduction to Quantitative Genetics[M].London:Longman Scientific and Technical,1989.
[28] Foolad M R,Jones R A.Mapping salt-tolerance genes in tomato(Lycopersicon esculentum)using trait-based marker analysis[J].Theor Appl Genet,1993,87:184-192.
[29] Foolad M R,Stoltz T,Dervinis C,et al.Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping[J].Mol Breed,1997,3:269-277.
[30] Zhang L P,Lin G Y,Liu D N,et al.Mapping QTLs conferring early blight(Alternaria solani)resistance in a Lycopersicon esculentum×L.hirsutum cross by selective genotyping[J].Mol Breed,2003,12:3-19.
[31] McCouchsr S R,Cho Y G,Yano M, et al.Report on QTL nomenclature[J].Rice Genet News Letter,1997,14:11-13.