[1] |
Chen Z, Bu Q Y, Liu G F, Wang M Q, Wang H R, Liu H Z, Li X F, Li H, Fang J, Liang Y, Teng Z F, Kang S, Yu H, Cheng Z K, Xue Y B, Liang C Z, Tang J Y, Li J Y, Chu C C. Genomic decoding of breeding history to guide breeding-by-design in rice[J]. National Science Review, 2023, 10(5):nwad029.doi: 10.1093/nsr/nwad029.
URL
|
[2] |
Hickey L T, Hafeez A N, Robinson H, Jackson S A, Leal-Bertioli S C M, Tester M, Gao C X, Godwin I D, Hayes B J, Wulff B B H. Breeding crops to feed 10 billion[J]. Nature Biotechnolog, 2019, 37(7):744-754.doi: 10.1038/s41587-019-0152-9.
|
[3] |
Sun W X, Fan J, Fang A F, Li Y J, Tariqjaveed M, Li D Y, Hu D W, Wang W M. Ustilaginoidea virens:insights into an emerging rice pathogen[J]. Annual Review of Phytopatholog, 2020, 58:363-385.doi: 10.1146/annurev-phyto-010820-012908.
URL
|
[4] |
Wang Q, Kawano Y. Improving disease resistance to rice false smut without yield penalty by manipulating the expression of effector target[J]. Molecular Plant, 2022, 15(12):1834-1837.doi: 10.1016/j.molp.2022.11.009.
URL
|
[5] |
Van Dingenen J. A virulence effector resolved:how a fungal phosphatase effector promotes rice false smut[J]. The Plant Cell, 2022, 34(8):2831-2832.doi: 10.1093/plcell/koac158.
pmid: 35666569
|
[6] |
Yu S W, Liu P W, Wang J Y, Li D Y, Zhao D, Yang C, Shi D Y, Sun W X. Molecular mechanisms of Ustilaginoidea virens pathogenicity and their utilization in disease control[J]. Phytopathology Research, 2023, 5(1):1-14.doi: 10.1186/s42483-023-00171-3.
|
[7] |
Xie J T, Jiang D H. New insights into mycoviruses and exploration for the biological control of crop fungal diseases[J]. Annual Review of Phytopatholog, 2014, 52:45-68.doi: 10.1146/annurev-phyto-102313-050222.
URL
|
[8] |
Ghabrial S A, Castón J R, Jiang D H, Nibert M L, Suzuki N. 50-plus years of fungal viruses[J]. Virolog, 2015, 479/480:356-368.doi: 10.1016/j.virol.2015.02.034.
URL
|
[9] |
Hollings M. Viruses associated with a die-back disease of cultivated mushroom[J]. Nature, 1962, 196(4858):962-965.doi: 10.1038/196962a0.
|
[10] |
Li P F, Wang S C, Zhang L H, Qiu D W, Zhou X P, Guo L H. A tripartite ssDNA mycovirus from a plant pathogenic fungus is infectious as cloned DNA and purified virions[J]. Science Advances, 2020, 6(14):eaay9634.doi: 10.1126/sciadv.aay9634.
URL
|
[11] |
Liu H, Wang H, Liao X L, Gao B D, Lu X, Sun D H, Gong W J, Zhong J, Zhu H J, Pan X T, Guo L, Deng X W, Zhou Q. Mycoviral gene integration converts a plant pathogenic fungus into a biocontrol agent[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(50):e2214096119.doi: 10.1073/pnas.2214096119.
|
[12] |
Milgroom M G, Cortesi P. Biological control of chestnut blight with hypovirulence:a critical analysis[J]. Annual Review of Phytopatholog, 2004, 42:311-338.doi: 10.1146/annurev.phyto.42.040803.140325.
URL
|
[13] |
Zhang H X, Xie J T, Fu Y P, Cheng J S, Qu Z, Zhao Z Z, Cheng S F, Chen T, Li B, Wang Q Q, Liu X Q, Tian B N, Collinge D B, Jiang D H. A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for Brassica protection and yield enhancement[J]. Molecular Plant, 2020, 13(10):1420-1433.doi: 10.1016/j.molp.2020.08.016.
URL
|
[14] |
Yu X, Li B, Fu Y P, Jiang D H, Ghabrial S A, Li G Q, Peng Y L, Xie J T, Cheng J S, Huang J B, Yi X H. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18):8387-8392.doi: 10.1073/pnas.0913535107.
pmid: 20404139
|
[15] |
Ayllón M A, Turina M, Xie J T, Nerva L, Lee Marzano S Y, Donaire L, Jiang D H, Consortium I R. ICTV virus taxonomy profile: Botourmiaviridae[J]. The Journal of General Virolog, 2020, 101(5):454-455.doi: 10.1099/jgv.0.001409.
URL
|
[16] |
Lee Marzano S Y, Nelson B D, Ajayi-Oyetunde O, Bradley C A, Hughes T J, Hartman G L, Eastburn D M, Domier L L. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens[J]. Journal of Virolog, 2016, 90(15):6846-6863.doi: 10.1128/JVI.00357-16.
URL
|
[17] |
Zhang T T, Jiang Y H, Huang J B, Dong W B. Genomic organization of a novel partitivirus from the phytopathogenic fungus Ustilaginoidea virens[J]. Archives of Virolog, 2013, 158(11):2415-2419.doi: 10.1007/s00705-013-1742-3.
URL
|
[18] |
Zhong J, Lei X H, Zhu J Z, Song G, Zhang Y D, Chen Y, Gao B D. Detection and sequence analysis of two novel co-infecting double-strand RNA mycoviruses in Ustilaginoidea virens[J]. Archives of Virolog, 2014, 159(11):3063-3070.doi: 10.1007/s00705-014-2144-x.
URL
|
[19] |
|
|
Huang X T, He Z R, Shu C W, Zhou E X. Advances in mycoviruses of Ustilaginoidea virens and Rhizoctonia solani[J]. Biological Disaster Science, 2021, 44(2) :105-113.
|
[20] |
He Z R, Huang X T, Fan Y, Yang M, Zhou E X. Metatranscriptomic analysis reveals rich mycoviral diversity in three major fungal pathogens of rice[J]. International Journal of Molecular Sciences, 2022, 23(16):9192.doi: 10.3390/ijms23169192.
URL
|
[21] |
Liu Y, Zhang L Y, Esmael A, Duan J, Bian X F, Jia J C, Xie J T, Cheng J S, Fu Y P, Jiang D H, Lin Y. Four novel botourmiaviruses co-infecting an isolate of the rice blast fungus Magnaporthe oryzae[J]. Viruses, 2020, 12(12):1383.doi: 10.3390/v12121383.
URL
|
[22] |
García-Pedrajas M D, Cañizares M C, Sarmiento-Villamil J L, Jacquat A G, Dambolena J S. Mycoviruses in biological control:from basic research to field implementation[J]. Phytopatholog, 2019, 109(11):1828-1839.doi: 10.1094/phyto-05-19-0166-rvw.
URL
|