[1] Horvath P,Barrangou R.CRISPR/Cas,the immune system of bacteria and archaea[J].Science,2010,327(5962):167-170.
[2] Garneau J E,Dupuis M È,Villion M,et al.The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J].Nature,2010,468(7320):67-71.
[3] Jinek M,Chylinski K,Fonfara I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(696):816-821.
[4] Gasiunas G,Barrangou R,Horvath P A.Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(39):2579-2586.
[5] Cong L,Ran F A,Cox D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823.
[6] Mali P,Yang L H,Esvelt K M,et al.RNA-Guided human genome engineering via Cas9[J].Science,2013,339(6121):823-826.
[7] Jinek M,East A,Cheng A,et al.RNA-programmed genome editing in human cells[J].doi:10.7554/eLife,e00471.
[8] Cheng A W,Wang H Y,Yang H,et al.Multiplexed activation of endogenous genes by CRISPR-on,an RNA-guided transcriptional activator system[J].Cell Research,2013,23(10):1163-1171.
[9] Mali P,Aach J,Stranges P B,et al.CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering[J].Nature Biotechnology,2013,31(9):833-838.
[10] Gilbert L A,Larson M H,Morsut L,et al.CRISPR-Mediated modular RNA-Guided regulation of transcription in eukaryotes[J].Cell,2013,154(2):442-451.
[11] Qi L S,Larson M H,Gilbert L A,et al.Repurposing CRISPR as an RNA-Guided platform for Sequence-Specific control of gene expression[J].Cell,2013,152(5):1173-1183.
[12] Liu X S,Wu H,Ji X,et al.Editing DNA methylation in the mammalian genome[J].Cell,2016,167(1):233-247.e17.
[13] Zheng C,Zheng L,Yoo J K,et al.Landscape of infiltrating T cells in liver cancer revealed by Single-Cell sequencing[J].Cell,2017,169(7):1342-1356.
[14] Mout R,Ray M,Yesilbag Tonga G,et al.Direct cytosolic delivery of CRISPR/Cas9-Ribonucleoprotein for efficient gene editing[J].ACS Nano,2017,11(3):2452-2458.
[15] Wanzel M,Vischedyk J B,Gittler M P,et al.CRISPR-Cas9-based target validation for p53-reactivating model compounds[J].Nature Chemical Biology,2016,12(1):22-28.
[16] Yao X,Wang X,Hu X,et al.Homology-mediated end joining-based targeted integration using CRISPR/Cas9[J].Cell Research,2017,27(6):801-814.
[17] Belhaj K,Chaparro-Garcia A,Kamoun S,et al.Plant genome editing made easy:targeted mutagenesis in model and crop plants using the CRISPR/Cas system[J].Plant Methods,2013,9(1):39.
[18] Zhang H,Zhang J,Wei P,et al.The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J].Plant Biotechnology Journal,2014,12(6):797-807.
[19] Zaidi S S,Mahfouz M M,Mansoor S.CRISPR-Cpf1:A new tool for plant genome editing[J].Trends in Plant Science,2017,22(7):550-553.
[20] Chen Y,Wang Z,Ni H,et al.CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis[J].Science China,Life Sciences,2017,60(5):520-523.
[21] Lee J S,Kallehauge T B,Pedersen L E,et al.Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway[J].Scientific Reports,2015,5:8572.
[22] Su S,Hu B,Shao J,et al.CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients[J].Scientific Reports,2016,6:20070. |