华北农学报 ›› 2008, Vol. 23 ›› Issue (S2): 373-376. doi: 10.7668/hbnxb.2008.S2.085

• 论文 • 上一篇    下一篇

BP神经网络在烟蚜发生程度预测中的应用

任广伟1, 王秀芳1, 王新伟1, 李晓2, 张建党3, 梁其涛3   

  1. 1. 中国农业科学院, 烟草研究所, 山东, 青岛, 266101;
    2. 山东中烟工业公司技术中心, 山东, 济南, 250013;
    3. 安康市烟草公司, 陕西, 安康, 725000
  • 收稿日期:2008-08-11 出版日期:2008-12-31
  • 作者简介:任广伟(1973-),男,山东阳谷人,硕士,副研究员,主要从事烟草病虫害研究.
  • 基金资助:
    山东省烟草专卖局科技项目(KN90)

Application of BP Neural Network to Predict Occurrence Degree of Myzus persicae

REN Guang-wei1, WANG Xiu-fang1, WANG Xin-wei1, LI Xiao2, ZHANG Jian-dang3, LIANG Qi-tao3   

  1. 1. Tobacco Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
    2. Technology Center, Shandong Tobacco Industry Corporation, Jinan 250013, China;
    3. Ankang Tobacco Company, Ankang 725000, China
  • Received:2008-08-11 Published:2008-12-31

摘要: 为实现对烟田烟蚜发生程度的预测预报,以12年的历史资料为基础数据,采用BP神经网络方法建立了烟蚜发生程度的预测模型。该模型对待测样本的预测准确度为99.43%,回测准确度为87.36%。所建立的预测模型可提前1个多月对烟蚜发生程度进行预测,为中期预测模型,其预测结果可为烟田蚜虫综合治理提供依据。

关键词: 烟蚜, 发生程度, BP神经网络, 预测模型

Abstract: Basing on the data of 12 years, the method of BP neural network was applied to establish the predictionmodel of Myzus persicae occurrence for its prediction and forecast in tobacco field.The model exhibited prediction accura??cy of 99.43%, and back prediction accuracy of 87.36%, respectively.The prediction model could predict the occcurencedegree of Myzus persicae more than one month in advance, so the middle??term prediction model could be applied in IPMof Myzus persicae in tobacco field.

Key words: Myzus persicae, Occurrence degree, BP neural network, Prediction model

中图分类号: 

引用本文

任广伟, 王秀芳, 王新伟, 李晓, 张建党, 梁其涛. BP神经网络在烟蚜发生程度预测中的应用[J]. 华北农学报, 2008, 23(S2): 373-376. doi: 10.7668/hbnxb.2008.S2.085.

REN Guang-wei, WANG Xiu-fang, WANG Xin-wei, LI Xiao, ZHANG Jian-dang, LIANG Qi-tao. Application of BP Neural Network to Predict Occurrence Degree of Myzus persicae[J]. ACTA AGRICULTURAE BOREALI-SINICA, 2008, 23(S2): 373-376. doi: 10.7668/hbnxb.2008.S2.085.

使用本文

0
    /   /   推荐 /   导出引用

链接本文: http://www.hbnxb.net/CN/10.7668/hbnxb.2008.S2.085

               http://www.hbnxb.net/CN/Y2008/V23/IS2/373