利用气孔性状差异明显的粳稻和籼稻品种构建的Sasanishiki/Habataki//Sasanishiki///Sasanishiki回交重组自交系群体为试验材料,根据已有遗传连锁图谱选定236个RFLP分子标记,对水稻齐穗剑叶气孔性状进行QTL分析。共检测到4个气孔性状相关的QTL,包括3个控制气孔密度的QTL(qSD2、qSD4 和 qSD12),分布在第2、4和12号染色体上,贡献率分别为13.11%,11.76%,22.70%;1个控制气孔宽度的QTL(qSW3),位于第3号染色体上,贡献率为10.04%。气孔密度和气孔宽度的增效等位基因分别来源于粳稻和籼稻。气孔密度与气孔长度存在极显著负相关(r=-0.509**),气孔长度与气孔宽度呈极显著正相关(r=0.302**)。4个QTL位点除了 qSW3 与前人研究的控制全氮含量的 qTLN-3a 重叠外,其他QTL均为未被检测到的位点,反映了气孔性状遗传机理的复杂性。为揭示水稻气孔性状的遗传机理以及籼粳稻气孔性状差异的分子机制提供重要参考。
Using backcross recombinant inbred lines derived from a cross between a tropical japonica, Sasanishiki and an indica variety, Habataki, quantitative trait loci(QTLs) controlling the stoma related traits of flag leaf by 236 RFLP molecular markers from genetic linkage map in rice were analyzed.A total of four QTLs for stoma related traits were identified.Three putative QTLs (qSD2, qSD4 and qSD12) for stomatal density were mapped on chromosome 2, 4 and 12 with the contribution of each QTL was 13.11%, 11.76% and 22.70%, respectively.On chromosome 3 of rice, one QTL(qSW3)for stomatal width was detected, with the explained variance of 10.04%.The alleles for stomatal density and stomatal width were contributed by Sasanishiki and Habataki, respectively.Significant negative differences were found between stomatal density and stomatal length(r=-0.509A), while significant positive correlations were observed between stomatal length and stomatal width(r=0.302A).All the three QTLs controlling stomatal density were not previously reported, but qSW3 controlling stomatal width was overlapped with qTLN-3a controlling total nitrogen content from other study.It reflected the genetic complexity of stomatal traits.These results will help to reveal the genetic mechanism of stomatal trait in rice and provide vital reference for the molecular mechanism of difference of stomatal traits between indica and japonica rice.
[1] Berger D,Altmann T.A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana [J].Genes & Development,2000,14(9):1119-1131.
[2] Casson S A,Hetherington A M.Environmental regulation of stomatal development[J].Curr Op in Plant Biol,2010,13(1):90-95.
[3] Hetherington A M,Woodward F I.The role of stomata in sensing and driving environmental change[J].Nature,2003,424(6951):901-908.
[4] 郑相如,王希善.植物解剖结构显微图谱[M].北京:农业出版社,1983:186-190.
[5] Jones H G.Stomatal control of photosynthesis and transpiration[J].Exp Bot,1998,49:387-398.
[6] Bergmann D C.Integrating signals in stomatal development[J].Curr Op in Plant Biol,2004,7(1):26-32.
[7] 陈 凯,李 美,徐 海,等.籼粳稻杂交后代的剑叶气孔性状与亚种特性的关系[J].植物生理学通讯,2009,45(4):313-317.
[8] 王贺正,马 均,刘慧远,等.水稻抗旱性研究现状与展望[J].中国农学通报,2005,21(1):110-113,148.
[9] Liu T,Ohashi-Ito K,Bergmann D C.Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses[J].Development,2009,136(13):2265-2276.
[10] Lampard G R,Macallister C A,Bergmann D C.Arabidopsis stomatal initiation is controlled by M APK-mediated regulation of the bHLH SPEECHLESS[J].Science,2008,322(594):1113-1116.
[11] Dong J,Macallister C A,Bergmann D C.BASL controls asymmetric cell division in Arabidopsis[J].Cell,2009,137(7):1320-1330.
[12] 陈温福.稻叶气孔性状研究新方法[J].中国农业科技导报,2000,2(2):58-62.
[13] 徐正进,李金泉,黄瑞东,等.籼粳稻杂交后代亚种特性表现与分类研究[J].中国农业科学,2003,36(12):1571-1575.
[14] 赵姝丽,李 睿,徐正进.籼粳交RILs剑叶气孔与光合特性的初步研究[J].华北农学报,2010,25(6):194-197.
[15] Takai T,Yano M,Yamamoto T.Canopy temperature on clear and cloudy days can be used to estim-ate varietal differences in stomatal conductance in rice[J].Field Crops Research,2010,115:165-170.
[16] 李 睿,赵姝丽,毛 艇,等.水稻剑叶气孔性状QTL分析[J].中国水稻科学,2010,24(6):659-662.
[17] Nagata K,Fukuta Y,Shimzu H,et al.Quantitative trait loci for sink size and ripening traits in rice(Oryza sativa L .)[J].Breed Sci,2002,52(4):259-273.
[18] Mccouch S R,Cho Y G,Yano M,et al.Report on QTL nomenclature[J].Rice Genet Newsl,1997,14:11-13.
[19] 张 强,王春明,翟虎渠,等.水稻剑叶光合性状的 QTL 分析[J].江苏农业学报,2008,24(2):114-122.
[20] 刘丽霞,程红卫,陈温福,等.水稻剑叶气孔密度的研究[J].辽宁农业科学,2001(2):8-11.
[21] 刘丽霞,程红卫,陈温福,等.水稻上三片功能叶气孔性状[J].北华大学学报:自然科学版,2002,3(1):61-64,68.
[22] 刘丽霞,程红卫,陈温福,等.不同类型水稻剑叶气孔长、宽度与气孔密度的研究[J].垦殖与稻作,2001(2):5-8.
[23] Laza M,Kondo M,Ideta O,et al.Quantitative trait loci for stomatal density and size in lowland rice[J].Euphytica,2010,172(2):149-158.
[24] Ishimaru K,Shirota K,Higa M,et al.Identification of quantitative trait loci for adaxial and abaxial stomatal frequencies in Oryza sativa. [J].Plant Physiol Biochem,2001,39(2):173-177.
[25] 曹冬梅,康黎芳,王云山,等.根外施钾对苹果幼树气孔特性及光合速率的影响[J].山西农业科学,2002,30(1):57-60.
[26] 娄旭东,徐 滨.不同土壤条件对番茄叶片气孔导度的影响[J].天津农业科学,2011,17(6):111-112.
[27] 原海云,姚延梼.不同土壤条件对红花烟草叶片气孔导度的影响[J].天津农业科学,2012,18(1):134-135.
[28] 张有铎,蔡祖国,卢 莉,等.开瓶炼苗对菜用大黄组培苗气孔特性的影响[J].河南农业科学,2010(5):83-87.
[29] 齐红岩,刘 洋,刘海涛.水分亏缺对番茄叶片气孔特性及叶绿体超微结构的影响[J].西北植物学报,2009,29(1):9-15.
[30] 苏永红,朱高峰,冯 起,等.额济纳荒漠河岸胡杨林叶片气孔导度与微环境因子关系的模拟研究[J].西北植物学报,2008,28(7):1434-1439.