为探讨不同形态氮素营养对水分胁迫条件下水稻生长及氮素积累和分配的影响,采用室内营养液培养及聚乙二醇(PEG6000)模拟水分胁迫处理的方法,在苗期设置5种供氮形态(NH4+/NO3-比为0/100,25/5,50/50,5/25,100/0)和2种水分条件(非水分胁迫和水分胁迫)的组合处理进行研究.结果表明,在水分胁迫条件下,NH4+/NO3-比为25/5处理的株高和叶面积最大,达到100/0处理的1.5和1.3倍.2种水分条件下,NH4+/NO3-为25/5处理的根长均为最大,其在非水分胁迫和水分胁迫下分别为100/0处理的6.8倍和3.3倍;非水分胁迫条件下植株不同部位氮积累量均高于水分胁迫条件.2种水分条件下,根系氮积累量均以0/100处理最大,茎部氮积累量以100/0处理最大,0/100处理最小;在非水分胁迫条件下,叶片的氮积累以100/0处理最大,水分胁迫下则是以5/25处理最大.在水分胁迫条件下,单一供应NO3--N可以提高水稻根系中氮素的积累,同时供应NH4+和NO3-(5/25配比)可以促进氮在水稻叶片和茎中的积累和分配.
By using the method of nutrient solution culture and simulatedwater stresswith PEG6000,the effectsof dif ferent nitrogen forms(NO3--N,NH4+-N and the mixture of NO3--N and NH4+-N) and water statuses(nonwater stress and water stress condition) on growth and N accumulation and distribution of rice plant were studied.The results obtained were as follows: The plant height and leaf area of treatment 25/ 75(NH4+/NO3-)was the maximal among treatments,which was 1.5 and 1.3 times of treatment 100/ 0 respectively,under water stress condition.Root lengh of treatment 25/ 75was all the maximal among treatments under either non-water stress or water stress condition,which was 6.8 times of treatment 100/ 0 under nonwater stress,and 3.3 times under water stress.N accumulation in different part of plant under nonwater stress were all higher than that under water stress.Under two water condition,N accumulation in root of treatment 0/ 100 were all the maximal,and treatment 100/ 0had the maximal N accumulation in stem,the lowest was treatment 0/ 100.Under nonwa ter stress,leaf N accumulation of treatment 100/ 0was the maximal,under water stress,leaf N accumulation of treatment 75/ 25was the maximal.Under water stress,supply of single NO3--N might increase N accumulation in root,supply of mixture of NO3--N and NH4+-N could promote N accumulation and distribution in stem and leaf of rice plant.
[1] 朱庆森.水稻节水栽培研究论文集[M].北京:中国农业科技出版社,1995.
[2] Arth I,Frenzel P,Conrad R.Denitrofication coupled tonitrfication in the rhizosphere of rice[J].Soil Biology and Biochemistry,1998,30:509-515.
[3] 周毅,郭世伟,宋娜,等.水分胁迫和供氮形态耦合作用下分蘖期水稻的光合速率、水分与氮素利用[J].中国水稻科学,2006,20(3):313-318.
[4] Wang M Y,Siddiqi M Y,Ruth T J.Ammonium uptake by rice roots.2.kinetice of NH_4 flux across the plasmalemma[J].Plant Physiol,1993,103:1259-1267.
[5] 杨肖娥,孙羲.杂交稻和常规稻生育后期追施NO3+-N和NH_4~+-N的生理效应[J].作物学报,1991,17(4):283-291.
[6] 周毅,郭世伟,宋娜,等.供氮形态和水分胁迫对苗期-分蘖期水稻光合与水分利用效率的影响[J].植物营养与肥料学报,2006,12(3):334-339.
[7] 周毅,郭世伟,高迎旭,等.供氮形态和水分胁迫耦合作用对磷在苗期-分蘖期水稻植株不同部位含量与分配的影响[J].中国水稻科学,2006,20(5):505-511.
[8] 陈晓远,高志红,李玉华.供氮形态和水分胁迫对苗期水稻吸收氮素营养的影响[J].华北农学报,2008,23(1):163-167.
[9] 郭世伟,吴良欢,沈其荣,等.中国覆盖旱作水稻理论与实践[J].北京:中国农业大学出版社,2006:9.
[10] 岳亚鹏,李勇,薛琳,等.不同供氮形态对旱作水稻生长和养分吸收的影响[J].中国水稻科学,2008,22(4):405-410.
[11] 吴芳,高迎旭,宋娜,等.氮素形态及水分胁迫对水稻根系生理特性的影响[J].南京农业大学学报,2008,31(1):63-66.
[12] 宋娜,郭世伟,沈其荣.不同氮素形态及水分胁迫对水稻苗期水分吸收、光合作用及生长的影响[J].植物学通报,2007,24(4):477-483.
[13] 李勇,周毅,郭世伟,等.铵态氮和硝态氮营养对水、旱稻根系形态及水分吸收的影响[J].中国水稻科学,2007,21(3):294-298.
[14] 郁进元,何岩,赵忠福,等.长宽法测定作物叶面积的校正系数研究[J].江苏农业科学,2007(2):37-39.
[15] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
[16] 何文寿,李生秀,李辉桃.按态氮、硝态氮及其配比对作物生长量的影响[J].宁夏农学院学报,1996,17(4):16-20.
[17] 钱晓晴,沈其荣,徐国华.配合施用NH_4~+-N和NO_3+-N对旱作水稻生长与水分利用效率的影响[J].土壤学报,2003,40(6):807-812.
[18] 陈贵,周毅,郭世伟,等.水分胁迫条件下不同形态氮素营养对水稻叶片光合效率的调控机理研究[J].中国农业科学,2007,40(10):2162-2168.
[19] 吴芳,高迎旭,宋娜,等.氮素形态及水分胁迫对水稻根系生理特性的影响[J].南京农业大学学报,2008,31(1):63-66.
[20] Zhou Y C,Guo S W,Shen Q R.Effects of different nitrogen form and water status on biological characteristics of rice plants at seedling-tillering stage:Effects on the partitioning of N and assimilates to different parts[M]//Li C J.Plant Nutrition for Food Security,Human Health and Environmental Protection.Beijing:Tsinghua University Press,2005:342-343.