论文

一株腐殖质还原功能菌的分离筛选与鉴定

  • 陈楠 ,
  • 邓晓 ,
  • 邹雨坤 ,
  • 武春媛 ,
  • 李勤奋
展开
  • 1. 中国热带农业科学院环境与植物保护研究所, 海南 海口 571101;
    2. 海南大学环境与植物保护学院, 海南 海口 570228;
    3. 农业部儋州农业环境科学观测实验站, 海南 儋州 571737
陈楠 (1987- ),女,内蒙古呼和浩特人,在读硕士,主要从事环境微生物学研究

收稿日期: 2013-05-03

  网络出版日期: 2014-10-14

基金资助

国家自然科学基金资助项目(41101477);国家科技支撑计划子课题项目(2012BAC18B04-5);海南省重点科技项目(ZDXM20100021)

Isolation and Identification of a Humic Substances Bacterial Strain

  • CHEN Nan ,
  • DENG Xiao ,
  • ZOU Yu-kun ,
  • WU Chun-yuan ,
  • LI Qin-fen
Expand
  • 1. Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China;
    2. College of Environment and Plant Protection of Hainan University, Haikou 570228, China;
    3. Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agricultural, Danzhou 571737, China

Received date: 2013-05-03

  Online published: 2014-10-14

摘要

腐殖质呼吸是一种新型微生物能量代谢方式,菌种资源研究成为腐殖质呼吸的研究重点。利用厌氧富集分离方法,从木薯堆肥土壤中获得1株具有腐殖质还原特性的兼性厌氧菌株,编号为HN02。HN02为革兰氏阳性菌,细胞为短杆状,菌落呈黄色,表面光滑,边缘整齐;最适生长盐度为1%,最适生长温度为30℃,最适生长pH值7.5~8.5;可利用麦芽糖作为碳源,明胶液化和硝酸盐还原为阴性;16S rDNA基因序列分析结果表明:菌株HN02与天花板节杆菌亲缘关系最近,同源性达99.4%;HN02能在以葡萄糖作为电子供体,以AQDS为唯一电子受体的厌氧环境下将AQDS还原为AH2QDS,还原率达40%。菌株HN02是1株具有腐殖质还原特性的天花板节杆菌,首次报道该菌属菌株具有腐殖质还原特性,为完善腐殖质还原特性的微生物系统提供理论基础。

本文引用格式

陈楠 , 邓晓 , 邹雨坤 , 武春媛 , 李勤奋 . 一株腐殖质还原功能菌的分离筛选与鉴定[J]. 华北农学报, 2013 , 28(4) : 179 -183 . DOI: 10.3969/j.issn.1000-7091.2013.04.033

Abstract

The humus respiration is a new way of microbial energy metabolism.And the research about strains resources becomes the focus point.A facultative anaerobic humus- reducing bacterium,designated HN02,was isola- ted from cassava dregs composting.Strain HN02 is a gram- positive,short rod- shaped,gelatin hydrolysis and nitrate reduction- negative bacterium.Optimal growth salt was 1% (NaCl); optimal growth temperature was 30 ℃ and opti- mal pH was at 7. 5- 8. 5. Analysis of 16S rDNA of HN02 indicated that the closest phylogenetic relative among the valid species was Arthrobacter tecti,with 99. 4% 16S rDNA similarity.Strain HN02 can utilize AQDS via anaerobic enrichment procedure with glucose as the electron donor and AQDS as the sole terminal electron acceptor.The re- duction ratio of AQDS was 40%.Thus,the humus- reducing of Arthrobacter tecti HN02 is here reported for the first time and it can provides the theoretical basis for microbial systems with characteristics of humus reduction.

参考文献

[1] Stevenson F J. Humus chemistry: genesis,composition,re-actions[M]. John Wiley: New York,1994.
[2] Cervantes F J,de Bok F A M,Tuan D D,et al. Reduction of humic substances by halorespiring,sulphate-reducing and methanogenic microorganisms[J]. Environmental Mi-crobiology,2002,4(1): 51-57.
[3] Benz M,Schink B,Brune A. Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria[J]. Applied and Environmental Microbiology,1998,64(11): 4507-4512.
[4] Wang Y B,Wu C Y,Wang X J,et al. The role of humic substances in the anaerobic reductive dechlorination of 2,4-D by Comamonas koreensis strain CY01[J]. Journal of Hazardous Materials,2009,164(2-3): 941-947.
[5] Kappler A,Straub K L. Geomicrobiological cycling of iron [J]. Reviews Mineralogy and Geochemistry,2005,59 (1): 85-108.
[6] Weber K A,Achenbach L A,Coates J D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduc-tion[J] . Nature Reviews Microbiology,2006,4: 752-764.
[7] Porsch K,Dippon U,Rijal M L,et al. In-situ magnetic susceptibility measurements as a tool to follow geomicro-biological transformation of Fe minerals[J]. Environmen-tal Science and Technology,2010,44(10): 3846-3852.
[8] Scott D T,McKnight D M,Blunt-Harris E L,et al. Qui-none moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms [J]. Environmental Science and Technology,1998,32 (19): 2984-2989.
[9] Cory R M,McKnight D M. Fluorescence spectroscopy re-veals ubiquitous presence of oxidized and reduced qui-nones in dissolved organic matter[J]. Environmental Sci-ence and Technology,2005,39(21): 8142-8149.
[10] Jie Jiang,Irisbauer,Andreapaul,et al. Arsenic redox changes by microbially and chemically formed semiqui-none radicals and hydroquinones in a humic substance model quinone[J]. Environmental Science and Technol-ogy,2009,43(10): 3639-3645.
[11] Coates J D,Ellis D J,Blunt Harris E L,et al. Recovery of humic-reducing bacteria from a diversity of environ-ments[J]. Applied and Environmental Microbiology,1998,64(4): 1504-1509.
[12] Fredrickson J K,Zachara J M,Kennedy D W,et al. Bio-genic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacte-rium[J]. Geochimica et Cosmochimica Acta,1998,62 (19-20): 3239-3257.
[13] Van Trump J I,Sun Y,Coates J D. Microbial interactions with humic substances[J]. Advances in Applied Micro-biology,2006,60: 55-96.
[14] Luijten M L,Weelink S A,Godschalk B,et al. Anaero-bic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms [J]. FEMS Microbiology Ecology,2004,49 (1): 145-150.
[15] O'Loughlin E J. Effects of electron transfer mediators on the bioreduction of lepidocrocite by Shewanella putrefa-ciens CN32 [J]. Environmental Science and Technolo-gy,2008,42(18): 6876-6882.
[16] Wrighton K C,Agbo P,Warnecke F,et al. A novel ecologi-cal role of the firmicutes identified in thermophilic microbi-al fuel cells[J] . ISME J,2008,2(11): 1146-1156.
[17] Li X M,Zhou S G,Li F B,et al. Fe () oxide reduc-tion and carbon tetrachloride dechlorination by a newly i-solated Klebsiella pneumoniae strain L17 [J]. Journal of Applied Microbiology,2009,106(1): 130-139.
[18] Chunyuan Wu,Li Zhuang,Shungui Zhou,et al. Fe()-enhanced anaerobic transformation of 2,4-dichlorophe-noxyacetic acid byan iron-reducing bacterium Comamonas koreensis CY01[J] . FEMS,2010,71(1): 106-113.
[19] 武春媛,李芳柏,周顺桂,等. 成团泛菌 MFC-3 的分离 鉴定及其腐殖质/Fe() 呼吸特性研究[J]. 环境科 学,2010,31(1): 237-242
[20] Linxian Ding,Taketo Hirose,Akira Yokota. Four novel Arthrobacter species isolated from filtration substrate [J]. International Journal of Systematic and Evolution-ary Microbiology,2009,59(4): 856-862.
[21] Westerberg K,Elvang A M,Stackebrandt E,et al. Ar-throbacter chlorophenolicus sp. nov.,a new species ca-pable of degrading high concentrations of 4-chlorophenol [J]. International Journal of Systematic and Evolution-ary Microbiology,2000,50(6): 2083-2092.
[22] Borodina E,Kelly D P,Schumann P,et al. Enzymes of dimethylsulfone metabolism and the phylogenetic char-acterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov.,Arthrobacter methylotrophus sp. nov.,and Hyphomicrobium sulfonivorans sp. nov.[J]. Archives of Microbiology,2002,177: 173-183.
[23] Kuhn D A,Starr M P. Arthrobacter atrocyaneus,n. sp.,and its blue pigment[J]. Archives of Microbiology,1960,36: 175-181.
[24] Hong Y G,Guo J,Xu Z C,et al. Humic substances act as electron acceptor and redox mediator for microbial dis-similatory azoreduction by Shewanella decolorationis S12 [J]. Journal of Microbiology Biotechnology,2007,17 (3): 428-437.
[25] Kim H S,Pfaender F K. Effects of microbially mediated redox conditions on PAH-soil interactions[J] . Environmental Sci-ence and Technology,2005,39(23):9189-9196.
[26] Ma C,Zhuang L,Zhou S G,et al. Alkaline extracellular reduction: isolation and characterization of an alkaliphlic and halotolerant bacterium,Bacillus pseudofirmus MC02 [J]. Journal of Applied Microbiology,2012,112 (5 ): 883-891.
[27] Chunyuan Wu,Li Zhuang,Shungui Zhou,et al. Coryne-bacterium humireducens sp. nov.,an alkaliphilic humic-reducing bacterium isolated from a microbial fuel cell [J]. International Journal of Systematic and Evolution-ary Microbiology,2011,61: 882-887.
[28] 朱希坤,李清艳,蔡宝立. 节杆菌 AD26 的分离鉴定及 其与假单胞菌 ADP 对阿特拉津的联合降解[J]. 农业 环境科学学报,2009,28(3): 627-632.
[29] 解秀平,闫艳春,刘萍萍,等. 降解甲基对硫磷的节杆 菌 L4 菌株的分离和降解特性研究[J]. 环境科学学 报,2006,26(10): 1637-1642.
[30] 蒋永荣,赵凯鹏,陈欢. 节杆菌菌株 LZP08X 的分离 鉴定及其降解苯酚特性[J]. 生物技术,2007,1(17): 63-66.
[31] 夏振远,雷丽萍,吴玉萍,等. 降烟碱细菌-烟草节杆菌 K9 的分离及鉴定中国烟草科学[J]. 中国烟草科学,2006(2): 1-4.
[32] 江月,周建刚,邹煜平,等. 一株有固氮能力的节杆 菌菌株的分离和初步鉴定[J]. 华中师范大学学报: 自然科学版,2004,2(38): 210-213.
文章导航

/